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This part describes the game of Roulette. Roulette is the game with the big wheel. They spin the wheel, toss in a marble and wait for the wheel to stop spinning.
Roulette is – essentially – a stateless game with numerous bets and a very simple process for game play.
The chapters of this part present the details on the game, an overview of the solution, and a series of sixteen exercises to build a complete simulation of the game, plus a variety of betting strategies. Each exercise chapter builds at least one class, plus unit tests; in some cases, this includes rework of previous deliverables.
This part describes parts of the more complex game of Craps. Craps is played with dice. A player throws the dice; sometimes it’s an immediate win (or loss). Other times, the number on the dice become the “point”, and you contine throwing dice until you make your point or crap out.
Craps is a game with two states and a number of state-change rules. It has a variety betting alternatives, some of which are quite complex.
The chapters of this part presents the details on the game, an overview of the solution, and a series of eleven exercises to build a complete simulation of the game, with a variety of betting strategies. The exercises in this part are more advanced; unlike Roulette, we will often combine several classes into a single batch of deliverables.
There are several examples of rework in this part, some of them quite extensive. This kind of rework reflects three more advanced scenarios: refactoring to generalize and add features, renaming to rationalize the architecture, and refactoring to extract features. Each of these is the result of learning; they are design issues that can’t easily be located or explained in advance.
This part describes the more complex game of Blackjack. Both the player and the dealer are trying to build a hand that totals 21 points without going over. The hand closest to 21 wins.
This game has a number of states and a number of complex state-change rules. It has very few different kinds of bets, but moderately complex rules for game play. However, it does have the most sophisticated playing strategy, since the player has a number of choices to make.
The chapters of this part presents the details on the game, an overview of the solution, and a series of six relatively complex exercises to build a complete simulation of the game. In the case of Blackjack, we have to create a design that allows for considerable variation in the rules of the game as well as variation in the player’s betting strategies.
A finished application includes more than just a working program. There are two additional questions.
How do you know it works? That is, do you have any tests that demonstrate that it works correctly?
We address this by creating unit tests.
How is it designed?
We address this by creating documentation within the program’s source files. This documentation can be extracted to create a tidy, complete reference for all the classes and functions within our application.
Pensés, The Provincial Letters: Provincial letter 16, p. 571.
The coffee-shop reason for reading this book is to provide the beginning designer with a sequence of interesting and moderately complex exercises in OO design.
If that’s all you needed to know, skip to the next chapter. It’s okay. We don’t mind.
The Problem. Some software developers find themselves stalled when trying to do object-oriented (OO) design. As programmers, they’ve understood the syntax of a programming language, and pieced together small examples. However, it is often difficult to take the next step to becoming a designer. The transition from guided learning of language features to self-directed design work is often ignored. Programmers are left to struggle through their first design projects without appropriate skills or support.
This may be you. You’ve learned the language, but you can’t take the next step.
While it is critically important to read examples of good design, a finished product doesn’t reveal the author’s decision-making process that created the design. There’s little support that helps a programmer come to understand the design process that leads to a final product.
The most notable consequence of this skills gap is some n00b programmers will create of software that is far more complex than necessary to effectively solve a given problem. This, in turn, leads to software with high maintenance costs stemming from the low quality. It also leads to an unfair indictment of OO technology; this is usually voiced as “we tried OO programming and it failed.”
Unrealistic Expectations. As programming team leaders, educators and consultants, we find that software development training is focused on the programming tools, but does not expose the process of creating a design. We all start out building software designed by someone else. What’s involved in design?
In the building trades, we would neither expect nor allow apprentice plumbers to design the sanitary sewage system for an urban office building. Yet, in too many Information Technology (IT) departments, software developers are expected to leap from basic training in their tools to application design.
To continue this rant, we also find that some managers are entrusted with significant projects, but are uncomfortable with OO design on modern high-performance hardware. They tend to focus their design energies on the kinds of software architectures that were appropriate when the enterprise owned a single computer, when 64 megabytes of memory was all the enterprise would ever need, and centralized disk storage was charged back to end user departments at a rate of pennies per track per month. In some organizations, there are a few enduring symptoms of this mind set in some of the ways that “end-user computing” is separated from “enterprise computing”; we relegate everything non-mainframe to second class status.
Management discomfort with OO technology surfaces in many ways. One shocking comment was that “no application needs more than six classes.” A consequence of this management attitude is an unrealistic expectation for schedule and the evolution of the deliverables.
Closing the Skills Gap. The deepeer answer on the intent of this book is to help you, the beginning designer, by giving you a sequence of interesting and moderately complex exercises in OO design. The exercises are not focused on a language, but on a design process. The exercises are not hypothetical, but must lead directly to working programs.
The long answer is that this book will make you work.
This book can also help managers develop a level of comfort with the process of OO software development. The applications we will build are a step above trivial, and will require some careful thought and design. Further, because the applications are largely recreational in nature, they are interesting and engaging. This book allows the reader to explore the processes and artifacts of OO design before project deadlines make good design seem impossible.
We hope to prevent managers from saying the following: “We had a good design, but were forced to compromise it to meet our schedule.” As consultants, we find this to be a sad statement of management’s emphasis of one near-term goal over long-term value. In one case, this was the result of a series of poorly-informed management decisions compounded on weak design skills. One of the root causes was the inability of the designers and managers to agree to a suitable course of action when a new kind of requirement made devastating changes to an existing design. We believe that more informed managers would have made a decision that created better long-term value.
Our primary audience – you – includes programmers who are new to OO programming.
You need to have an exposure to the language, but you need more time to understand objects and object-orientation. We will provide exercises that have four key features: just complex enough to require careful design work, just fun enough to be engaging, easy enough that results are available immediately, and can be built in simple stages.
In our effort to support you, we’ll provide a few additional details on language features. We’ll mark these as “Tips”. For more advanced students, these tips will be review material. We will not provide a thorough background in any programming language. The student is expected to know the basics of the language and tools.
Helpful additional skills include using one of the various unit test and documentation frameworks available. We’ve included information in the appendices.
OO Misdirection. Have you found your first exposure to objects to be more distasteful than empowering? Why does this happen?
Some instructors preface a course on a language (like Python or Java) with an extensive presentations on object orientation. It’s not easy to grasp OO design concepts before getting to the language fundamentals. In some cases, this leaves students lost as to how they will accomplish the noble and lofty goals of OO.
Other instructors leave OO for last, exposing the procedural side of the language first, and treating objects as a kind of add-on. This leaves students feeling that objects are optional. Additionally, some very skilled instructors are not skilled developers, and will often show examples that don’t reflect currently accepted best practices.
Classroom Use. Instructors are always looking for classroom projects that are engaging, comprehensible, and focus on perfecting language skills. Many real-world applications require considerable explanation of the problem domain; the time spent reviewing background information detracts from the time available to do the relevant programming. While all application programming requires some domain knowledge, the idea behind these exercises is to pick a domain that many people know a little bit about. This allows an instructor to use some or all of these exercises without wasting precious classroom time on incidental details required to understand the problem.
Skills. This book assumes an introductory level of skill in an OO programming language.
We provide specific examples in Python (at least version 2.5).
Student skills we expect include the following. If you can’t do these things, this book is too advanced. Close it now.
Language Details. There are two editions of this book, one emphasizing Python syntax and the other emphasizing Java syntax. Both books come from a common source, so that the OO Design issues are central and the language nuances are segregated.
This book presents a series of exercises to build simulations of the common, popular casino table games: Roulette, Craps and Blackjack. Each simulation can be extended to include variations on the player’s betting system. With a simple statistical approach, we can show the realistic expectations for any betting system. Each of these games has a separate part in this book. Each part consists of a number of individual exercises to build the entire simulation. The completed project results in an application that can provide simple tabular results that shows the average losses expected from each betting strategy.
The interesting degree of freedom in each of the simulations is the player’s betting strategy. The design will permit easy adaptation and maintenance of the player’s strategies. The resulting application program can be extended by inserting additional betting systems, which allows exploration of what (if any) player actions can minimize the losses.
Roulette. For those who’ve never been in a casino, or seen movies that have casinos in them, Roulette is the game with the big wheel. They spin the wheel and toss in a marble. When the wheel stops spinning, the bin in which the marble rests defines the winning outcomes.
People who bet on the right things get money. People who bet on the wrong things lose money.
Starting in Roulette, we proceed slowly, building up the necessary application one class at a time. Since this is the simplest game, the individual classes reflect that simplicity. We focus on isolation of responsibilities, creating a considerable number of classes. The idea is to build skills in object design by applying those skills to a number of classes.
The first chapter of the part provides details on the game of Roulette and the problem that the simulation solves. The second chapter is an overview of the solution, setting out the highest-level design for the application software. This chapter includes a technique for doing a “walk-through” of the design to be confident that the design will actually solve the problem.
Each of the remaining sixteen chapters is a design and programming exercise to be completed by the student. Plus or minus a Frequently Asked Questions (FAQ) section, each chapter has the same basic structure: an overview of the components being designed, some design details, and a summary of the deliverables to be built. The overview section presents some justification and rationale for the design. This material should help the student understand why the particular design was chosen. The design section provides a more detailed specification of the class or classes to be built. This will include some technical information on Java or Python implementation techniques.
Craps. For those who’ve never been in a casino, or seen the play “Guys and Dolls”, Craps is the game with the dice. A player shoots the dice. Sometimes there’s a great deal of shouting and clapping. A throw of the dice may – or may not – resolve bets. Additionally, a throw of the dice may also change the state of the game. A casino provides a number of visual cues as to the state of the game and the various bets.
In Craps, we build on the design patterns from Roulette. Craps, however, is a stateful game, so there is a more sophisticated design to handle the interactions between dice, game state and player. We exploit the State design pattern to show how the design pattern can be applied to this simple situation.
The first chapter is background information on the game of Craps, and the problem that the simulation solves. The second chapter is an overview of the solution, setting out the highest-level design for the application software. This chapter also provides a “walk-through” of the design.
Each of the remaining eleven chapters is an exercise to be completed by the student. Each chapter has the same basic structure: an overview of the component being designed, some design details, and a summary of the deliverables to be built.
Blackjack. For those who’ve never been in a casino, or seen a movie with Blackjack, Blackjack is a game with cards. The dealer deals two cards to themselves and each player. One of the dealer’s card is up and one is down, providing a little bit of information on the dealer’s hand. The players may ask for additional cards, or keep the hand they’ve got.
The idea is to build a hand that’s close to 21 points, but not more than 21. In Craps and Roulette there are a lot of bets, but few player decisions. In Blackjack, there are few bets, but really complex player decisions.
In Blackjack, the game states are more sophisticated than Craps or Roulette. In casino gift shops, you can buy small summary cards that enumerate all possible game states and responses. The more advanced student can tackle these sophisticated playing strategies. For the less advanced student we will simplify the strategies down to a few key conditions.
The first two chapters are background information on the game of Blackjack, the problem that the simulation solves, and an overview of the solution, setting out the highest-level design for the application software. Each of the remaining six chapters is an exercise to be completed by the student. Since this is more advanced material, and builds on previous work, this part has many simple deliverables compressed into the individual chapters.
Fit and Finish. We include several fit-and-finish issues in Fit and Finish. This includes more information and examples on unit testing and documentation.
Additionally, we cover some “main program” issues required to knit all of the software components together into a finished whole.
Casino table games may seem like an odd choice of subject matter for programming exercises. We find that casino games have a number of advantages for teaching OO design and OO programming.
This book does not endorse casino gaming. Indeed, one of the messages of this book is that all casino games are biased against the player. Even the most casual study of the results of the exercises will allow the student to see the magnitude of the house edge in each of the games presented.
We have to adopt a style for each of the languages we’re presenting. We won’t present a complete set of coding standards; we will omit a number of issues that should be standardized. Some IT shops have documents they call “coding standards”, but are little more than descriptive style guides. What follows is not this kind of style guide; instead, it is some justification of the style we use for the examples in this book.
Just to continune this rant, we find that source code examples speak louder than any gratuitously detailed “specification” of the desired style. We find that some IT organizations waste time trying to write definitions of the preferred style. A good example trumps the description of the example. In particular, as consultants, we are often asked to provide standards to an inexperienced team of programmers. While the programmers only look at the examples (often cutting and pasting them), some managers prefer to spend money on empty verbiage peripheral to the useful example.
Terminology. We tend to prefer Java-centric terminology: “field” and “method”. Occasionally, we will emphasize the differences between Java and Python by using the Python terms “attribute”, “instance variable” or “method function” .
Naming Style. We avoid using complex prefixes for variable names. In particular, we find prefixes to be little more than visual clutter. For example, an integer parameter with the amount of a bet might be called pi_amount where the prefix indicates the scope (p for a parameter) and type (i for an integer).
This style of name is only appropriate for primitive types, and doesn’t address complex data structures well at all. How does one name a parameter that is a LinkedList of Sets of Outcomes? In Java programs, the variables are formally declared, therefore, we find that we don’t need additional cues for their data type.
In some cases, prefixes are used to denote the scope of an instance variables. Variable names might include a cryptic one-letter prefix like “f” to denote an instance variable; sometimes programmers will use “my” or “the” as an English-like prefix. We prefer to reduce clutter.
In Python, instance variables are always qualified, typically by self., making the scope very clear.
Generally, method functions (and classes) should be short enough and simple enough that complex navigational aids are not necessary.
Here is a Python example.
Typical Python Example
The output from the above program will be shown as follows:
We will use the following type styles for references to a specific Class, method(), or variable.
Most of the design specifications will provide Java-style method and variable descriptions. Python doesn’t use type specifications, and Python programmers will have to translate the Java specifications into Python by removing the type names.
Sidebars
When we do have a significant digression, it will appear in a sidebar, like this.
Tip
Tip
There will be design tips, and warnings, in the material for each exercise. These reflect considerations and lessons learned that aren’t typically clear to starting OO designers.
We would like to thank Chuck Pyrak for putting us up to this. His idea of a One Room Schoolhouse to teach Java to an audience at multiple skill levels was a great idea. Additionally, our colleagues who collaborated through BLOKI brought infinte wisdom and insight to a complex and difficult project.
Thanks to Dion Dock and Robert Lucente for comments and corrections.
We’ll set our goal by presenting several elements that make up a complete problem statement: a context in which the problem arises, the problem, the forces that influence the choice of solution, the solution that balances the forces, and some consequences of the chosen solution.
Based on the problem statement, we’ll present the high-level use case that this software implements. The use case is almost too trivial to bother defining. However, we have seen many projects run aground because they lacked even the most rudimentary description of the actor, the system and how the system helps the actor create value.
We will summarize the approach to the solution, describing the overall strategy that we will follow. This is a kind of overall design pattern that we’ll use to establish some areas of responsibility.
We will also describe the technical foundations. In this case, they are not terribly complex, but this is an important part of describing any software solution, no matter how simple.
We will dance around the methodology issue. Our intent is not to sell a particular methodology, but to provide some perspective on how we broke the work into manageable pieces.
Finally, we’ll present some important parts of getting started on the solution. These are more specific, technical considerations that define common aspects of our approach.
We’ll start with a big-picture overview of our problem. We’ll present the context in which the problem arises, a summary of the problem, and a “business use case”. This will show how our application is used.
We can then dig into the details of our application.
Important
Fools Rush In
It’s important not to rush in to programming.
Here’s the rule: The first person to cut code loses.
Be sure you understand the problem being solved and how software solves that problem.
Context. Our context is the “classic” casino table games played against the house, including Roulette, Craps and Blackjack. We want to explore the consequences of various betting strategies for these casino games.
Questions include “How well does the Cancellation strategy work?” “How well does the Martingale strategy works for the Come Line odds bet in Craps?” “How well does this Blackjack strategy I found on the Internet compare with the strategy card I bought in the gift shop?”
A close parallel to this is exploring variations in rules and how these different rules have an influence on outcomes. Questions include “What should we do with the 2x and 10x odds offers in Craps?” “How should we modify our play for a single-deck Blackjack game with 6:5 blackjack odds?”
Our context does not include exploring or designing new casino games. Our context also excludes multi-player games like poker. We would like to be able to include additional against-the-house games like Pai Gow Poker, Caribbean Stud Poker, and Baccarat.
Problem. Our problem is to answer the following question: For a given game, what player strategies produce the best results?
Forces. There are a number of forces that influence our choice of solution. First, we want an application that is relatively simple to build. Instead of producing an interactive user interface, we will produce raw data and statistical summaries. If we have little interaction, a command-line interface will work perfectly. We can have the user specify a player strategy and the application respond with a presentation of the results. If the results are tab-delimited, they can be pasted into a spreadsheet for further analysis.
Another force that influences our choice of solution is the need to be platform and language agnostic. In this case, we have selected an approach that works well on POSIX-compliant operating systems (i.e., Linux, MacOS, and all of the proprietary UNIX variants), and also works on non-compliant operating systems (i.e., all of the Windows versions). We have chosen two OO languages that work identically on both platform families: Java and Python.
We also need to strike a balance between interesting programming, probability theory and statistics. On one hand, the simplicity of these games means that complete analyses have been done using probability theory. However, that’s not a very interesting programming exercise, so we will ignore the pure probability theory route in favor of learning OO design and programming.
Another force is the desire to reflect actual game play. While a long-running simulation of thousands of invidual cycles of play will approach the theoretical results, people typically don’t spend more than a few hours at a table game. If, for example, a Roulette wheel is spun once each minute, a player is unlikely to see more that 480 spins in an eight-hour evening at a casino. Additionally, many players have a fixed budget, and the betting is confined by table limits. Finally, we need to address the subject of “money management”: a player may elect to stop playing when they are ahead. This structures our statistical analysis: we must simulate sessions of play that are limited in time, the amount lost and the amount won.
High-Level Use Case. The high-level (or “business”) use case is an overall cycle of investigation . From this overall view, the actor’s goal is to find an optimal strategy for a given game.
Here’s the scenario we’re imagining.
Business Use Case
Consequences. We’re going build the simulator application that supports this high-level (or “business”) use case.
We’re not going to build the IDE to build the new classes. Any IDE should work.
Additionally, we won’t address how to analyze the results.
One of the most important consequences of our solution is that we will build an application into which new player betting strategies can be inserted. Clever gamblers invent new strategies all the time.
We will not know all of the available strategies in advance, so we will not be able to fully specify all of the various design details in advance. Instead, we will find ourselves reworking some parts of the solution, to support a new player betting strategy. This forces us to take an Agile approach to the design and implementation.
The previous section was a fluffy overview of what we’re trying to accomplish. It sets some goals and provides a detailed context for who’s using this application and why.
Armed with that informatin, we can look at the simulation application we’re going to write.
Our simulation application will allow a programmer to experiment with different casino game betting strategies. We’ll build a simple, command-line simulator that provides a reliable, accurate model of the game. We need to be able to easily pick one of a variety of player betting strategies, play a number of simulated rounds of the game, and produce a statistical summary of the results of that betting strategy.
This leads us to a small essential use case. There is a single actor, the “investigator”. The actor’s goal is to see the expected results of using a particular strategy for a particular game. The typical scenario is the following.
Essential Use Case
Actor. Specifies which game and betting strategy to test.
The game may require additional parameters, like betting limits.
The strategy may need additional parameters, like an initial budget, or stake.
System. Responds with a statistical summary of the outcomes after a fixed number of cycles (spins, or throws or hands). The number of cycles needs to be small (on the order of 200, to reflect only a few hours of play).
On Simplicity. Yes, this use case is very simple. It’s a command-line application: it’s supposed to be simple.
The point is to explore OO design, not development of a fancy GUI or web application.
Simplicity is a virtue. You can add a fancy GUI or web presentation of the results later. First, create some results.
We feel that the use case technique is badly abused by some IT organizations. Quoting from [Jacobson95]. “A use case is a sequence of transactions in a system whose task is to yield a result of measurable value to an individual actor of the system.”
A use case will clearly identify an actor, define the value created, and define a sequence of transactions. A use case will be a kind of system test specification. A use case will define the system’s behavior, and define why an actor bothers to interact with it.
A use case is not a specification, and does not replace ordinary design. We have had experiences with customers who simply retitle their traditional procedural programming specifications as “use cases”. We hypothesize that this comes from an unwillingness to separate problem definition from solution definition. The consequence is a conflation of use case, technical background, design and programming specifications into gargantuan documents that defy the ability of programmers or users to comprehend them.
There are a number of common problems with use cases that will make the design job more difficult. Each of these defects should lead to review of the use case with the authors to see what, if anything, they can do to rework the use case to be more complete.
- No Actor. Without an actor, it’s impossible to tell who is getting value from the interaction. A catch-all title like “the user” indicates a use case written from the point of view of the database or the application software, not an actual person. An actor can be an interface with other software, in which case, the actual software needs to be named. Without knowing the actor, you will have trouble deciding which classes are clients and which classes provide the lower-level services of the application.
- No Value Proposition. There are two basic kinds of value: information for decision-making or actions taken as the result of decision-making. People interact with software because there are decisions the software cannot make or there are actions the actor cannot make. Some use cases include value-less activities like logging in, or committing a transaction, or clicking “Okay” to continue. These are parts of operating scenarios, not statements of value that show how the actor is happier or more successful. Without a value proposition, you will have no clue as to what problem the software solves, or what it eventually does for the actor.
- No Interactions. If the entire body of the use case is a series of steps the application performs, we are suspicious of the focus. We prefer a use case to emphasize interaction with the actor. Complex algorithms or interface specifications should be part of an appendix or supplemental document. Without any interaction, it isn’t clear how the actor uses the software.
We also try to make a distinction between detailed operating scenarios and use cases. We have seen customers write documents they call “detailed use cases” that describe the behavior of individual graphical user interface widgets or panels. We prefer to call these scenarios, since they don’t describe measuable business value, but instead describe technical interactions.
From reading the problem and use case information, we can identify at least the following four general elements to our application.
When we look at common design patterns, the Model-View-Control pattern often helps to structure applications. A more sophisticated, transactional application may require a more complex structure. However, in this case, the game, the player, and the statistics are the model. The command line selection of player and the reporting of raw data is the view. The overall control component creates the various objects to start the simulation.
While interesting, we will not pursue the design of a general-purpose simulation framework. Nor will we use any of the available general frameworks. While these are handy and powerful tools, we want to focus on developing application software “from scratch” (or de novo) as a learning exercise.
Our solution will depend heavily on desktop integration: the actor will use their IDE to create a strategy and build a new version of the application program. Once the application is built, the actor can run the application from the command line, collecting the output file. The statistical results file can be analyzed using a spreadsheet application. There are at least three separate application programs involved: the IDE (including editor and compiler), the simulator, the spreadsheet used for analysis.
A typical execution of the simulator will look like the following example.
Sample Execution
We are intentionally limiting our approach to a simple command-line application using the default language libraries. Avoiding additional libraries assures a “lowest-common denominator” multi-platform application. For Java, this standard is the J2SE set of libraries; we won’t use any J2EE extensions. For Python, it is the base installation.
There are a number of more technical considerations that we will expand in Deliverables. These include the use of an overall simulation framework and an approach for unit testing.
Among the topics this book deals with in a casual – possibly misleading – manner are probability and statitics. Experts will spot a number of gaps in our exposition. For example, there isn’t a compelling need for simulation of the simpler games of Craps and Roulette, since they can be completely analyzed. However, our primary objective is to study programming, not casino games, therefore we don’t mind solving known problems again. We are aware that our statistical analysis has a number of deficiencies. We will avoid any deeper investigation into statistics.
We want to focus on technical skills; we won’t follow any particular software development methodology too closely. We hesitate to endorse a specific methodology; doing so inevitably alienates readers who embrace a different methodology. To continue this rant, we find that almost everyone has an existing notion of the proper way to organize software development work. This leads to the common practice of customizing methodologies, in most cases without a deep background in the methodology or the changes being made.
We prefer to lift up a few techniques which have a great deal of benefit.
The exercises are presented as if we are doing a kind of iterative design with very, very small deliverables. We present the exercises like this for a number of reasons.
First, we find that beginning designers work best with immediate feedback on their design decisions. While we present the design in considerable detail, we do not present the final code. Programmers new to OO design will benefit from repeated exposure to the transformation of problem statement through design to code.
Second, for iterative or agile methodologies, this presentation parallels the way software is developed. A project manager may use larger collections of deliverables. However, the actual creation of functional source eventually decomposes into classes, fields and methods. For project managers, this exposition will help them see where and how rework can occur; giving them a chance to plan for the kind of learning that occur in most projects.
Third, for project teams using a strict waterfall methodology – with all design work completed before any programming work – the book can be read in a slightly different order. From each exercise chapter, read only the overview and design sections. From that information, integrate the complete design. Then proceed through the deliverables sections of each chapter, removing duplicates and building only the final form of the deliverables based on the complete design. This will show how design rework arises as part of a waterfall methodology.
This section addresses a number of methodology or process topics:
Our approach to overall quality assurance is relatively simple. We feel that a focus on unit testing and documetation covers most of the generally accepted quality factors. The Software Engineering Institute (SEI) published a quality measures taxonomy. While officially “legacy”, it still provides an exhaustive list of quality attributes. These are broadly grouped into five categories. Our approach covers most of those five categories reasonably well.
Need Satisfaction. Does the software meet the need? We start with a problem statement, define the use case, and then write software which is narrowly focused on the actor’s needs. By developing our application in small increments, we can ask ourself at each step, “Does this meet the actor’s needs?” It’s fairly easy to keep a software development project focused when we have use cases to describe our goals.
Performance. We don’t address this specifically in this book. However, the presence of extensive unit tests allows us to alter the implemention of classes to change the overall performance of our application. As long as the resulting class still passes the unit tests, we can develop numerous alternative implementations to optimize speed, memory use, input/output, or any other resource.
Maintenance. Software is something that is frequently changed. It changes when we uncover bugs. More commonly, it changes when our understanding of the problem, the actor or the use case changes. In many cases, our initial solution merely clarifies the actor’s thinking, and we have to alter the software to reflect a deeper understanding of the problem.
Maintenance is just another cycle of the iterative approach we’ve chosen in this book. We pick a feature, create or modify classes, and then create or modify the unit tests. In the case of bug fixing, we often add unit tests to demonstrate the bug, and then fix our classes to pass the revised unit tests.
Adaptation. Adaptation refers to our need to adapt our software to changes in the environment. The environment includes interfaces, the operating system or platform, even the number of users is part of the environment. When we address issues of interoperability with other software, portability to new operating systems, scalability for more users, we are addressing adaptation issues.
We chose Python and Java to avoid having interoperability and portability issues; these platforms give admirable support for many scalability issues. Generally, a well-written piece of software can be reused. While this book doesn’t focus on reuse, Java and Python are biased toward writing reusable software.
Organizational. There are some organizational quality factors: cost of ownership and productivity of the developers creating it. We don’t address these directly. Our approach, however, of developing software incrementally often leads to good developer productivity.
Our approach (Incremental, Unit Testing, Embedded Documentation) assures high quality in four of the five quality areas. Incremental development is a way to focus on need satisfaction. Unit testing helps us optimize resource use, and do maintenance well. Our choices of tools and platforms help us address adaptation.
The organizational impact of these techniques isn’t so clear. It is easy to mis-manage a team and turn incremental development into a quagmire of too much planning for too little delivered software. It is all too common to declare that the effort spent writing unit test code is “wasted”.
Ultimately, this is a book on OO design. How people organize themselves to build software is beyond our scope.
In Problem Statement, we described the problem. In Solution Approach, we provided an overview of the solution. The following parts will guide you through an incremental design process; a process that involves learning and exploring. This means that we will coach you to build classes and then modify those classes based on lessons learned during later steps in the design process. See our Soapbox on Rework for an opinion on the absolute necessity for design rework.
We don’t simply present a completed design. We feel that it is very important follow a realistic problem-solving trajectory so that beginning designers are exposed to the decisions involved in creating a complete design. In our experience, all problems involve a considerable amount of “learn as you go”.
We want to reflect this in our series of exercises. In many respects, a successful OO design is one that respects the degrees of ignorance that people have when starting to build software. We will try to present the exercises in a way that teaches the reader how to manage ignorance and still develop valuable software.
Soapbox on Rework
We consider design rework to be so important, we will summarize the idea here.
Important
The best way to learn is to make mistakes.
Rework is a consequence of learning.
All of software development can be described as various forms of knowledge capture. A project begins with many kinds of ignorance and takes steps to reduce that ignorance. Some of those steps should involve revising or consolidating previous learnings.
A project without rework is suspiciously under-engineered.
For some, the word rework has a negative connotation. If you find the word distasteful, please replace every occurance with any of the synonyms: adaptation, evolution, enhancement, mutation. We prefer the slightly negative connotation of the word rework because it helps managers realize the importance of incremental learning and how it changes the requirements, the design and the resulting software.
Since learning will involve mistakes, good management plans for the costs and risks of those mistakes. Generally, our approach is to manage our ignorance; we try to create a design such that correcting a mistake only fixes a few classes.
We often observe denial of the amount of ignorance involved in creating IT solutions. It is sometimes very difficult to make it clear that if the problem was well-understood, or the solution was well-defined there would be immediately applicable off-the-shelf or open-source solutions. The absence of a ready-to-hand solution generally means the problem is hard. It also means that there are several degrees of ignorance: ignorance of the problem, solution and technology; not to mention ignorance of the amount of ignorance involved in each of these areas.
We see a number of consequences of denying the degrees of ignorance.
We find that any initial “high-level” design can miss details of the problem domain, and this leads to rework. Forbidding rework amounts to mandating a full understanding of the problem. In most cases, our users do not fully understand their problem any more than our developers understand our users. Generally, it is very hard to understand the problem, or the solution. We find that hands-on use of preliminary versions of software can help more than endless conversations about what could be built.
In the programming arena, we find that Java and Python (and their associated libraries) are so powerful that detailed design is done at the level of individual language statements. This leads us to write the program either in English prose or UML diagrams (sometimes both) before writing the program in the final programming language. We often develop a strong commitment to the initial design, and subsequent revisions are merely transliterations with no time permitted for substantial revisions. While we have written the program two or three times over, the additional quality isn’t worth doubling or tripling the workload. We feel that the original workload should be managed as planned cycles of work and rework.
War Story on Bad Design
In one advanced programming course, we observed the following sad scenario. The instructor provided an excellent background in how to create abstract data type (ADT) definitions for the purely mathematical objects of scalar, vector and matrix. The idea was to leverage the ADTs to implement more complex operations like matrix multiplication, inversion and Gaussian elimination. The audience, primarily engineers, seemed to understand how this applied to things they did every day. The first solution, presented after a week of work, began with the following statement: “Rather than think it through from the basic definitions of matrix and vector, I looked around in my drawer and found an old FORTRAN program and rewrote that, basically transliterating the FORTRAN.” We think that a lack of experience in the process of software design makes it seem that copying an inappropriate solution is more effective than designing a good solution from scratch.
Many of the chapters will include some lengthy design decisions that appear to be little more than hand-wringning over nuances. While this is true to an extent, we need to emphasize our technique for doing appropriate hand-wringing over OO design. We call it “Looking For The Big Simple”, and find that managers don’t often permit the careful enumeration of all the alternatives and the itemization of the pros and cons of each choice. We have worked with managers who capriciously play their “schedule” or “budget” trump cards, stopping useful discussion of alternatives. This may stem from a fundamental discomfort with the technology, and a consequent discomfort of appearing lost in front of team members and direct reports. Our suggestion in this book can be summarized as follows:
Important
Good Design
Good OO design comes from a good process for technical decision-making.
First, admit what we don’t know, and then take steps to reduce our degrees of ignorance.
Which means not saying “work smarter not harder” unless we also provide the time and budget to actually get smarter. The learning process, as with all things, must be planned and managed. Our lesson learned from Blaise Pascal is that a little more time spent on design can result in considerable simplification, which will reduce development and maintenance costs.
It’s also important to note that no one in the real world is omniscient. Some of the exercises include intentional dead-ends. As a practical matter, we can rarely foresee all of the consequences of a design decision.
While there is a great deal of commonality among the three games, the exercises do not start with an emphasis on constructing a general framework. We find that too much generalization and too much emphasis on reuse is not appropriate for beginning object designers. See Soapbox on Reuse for an opinion on reuse. Additionally, we find that projects that begin with too-lofty reuse goals often fail to deliver valuable solutions in a timely fashion. We prefer not to start out with a goal that amounts to boiling the ocean to make a pot of tea.
Soapbox on Reuse
While a promise of OO design is reuse, this needs to be tempered with some pragmatic considerations. There are two important areas of reuse: reusing a class specification to create objects with common structure and behavior, and using inheritance to reuse structure and behavior among multiple classes of objects. Beyond these two areas, reuse can create more cost than value.
The first step in reuse comes from isolating responsibilities to create classes of objects. Generally, a number of objects that have common structure and behavior is a kind of reuse. When these objects cooperate to achieve the desired results, this is sometimes called emergent behavior: no single class contains the overall functionality, it grew from the interactions among the various objects.
This is sometimes called inversion of control.
When the application grows and evolves, we can preserve some class declarations, reusing them in the next revision of the application. This reduces the cost and risks associated with software change. Class definitions are the most fundamental and valuable kind of reuse.
Another vehicle for OO resuse is inheritance. The simple subclass-superclass relationship yields a form of reuse; a class hierarchy with six subclasses will share the superclass code seven times over. This, by itself, has tremendous benefits.
We caution against any larger scope of reuse. Sharing classes between projects may or may not work out well. The complexity of achieving inter-project reuse can be paralyzing to first-time designers. Often, different projects reflect different points of view, and the amount of sharing is limited by these points of view. As an example, consider a product in a business context. An external customer’s view of the product (shaped by sales and marketing) may be very different from the internal views of the same product. Internal views of the product (for example, finance, legal, manufacturing, shipping, support) may be very different from each other. Reconciling these views may be far more challenging than a single software development project. For that reason, we don’t encourage this broader view of reuse.
These exercises will refer to several of the “Gang of Four” design patterns in [Gamma95]. The Design Patterns book is not a prerequisite; we use it as reference material to provide additional insight into the design patterns used here. We feel that use of common design patterns significantly expands the programmer’s repertoire of techniques. We note where they are appropriate, and provide some guidance in their implementation.
In addition, we reference several other design patterns which are not as well documented. These are, in some cases, patterns of bad design more than patterns of good design.
Each chapter defines the classes to be built and the unit testing that is expected. A third deliverable is merely implied. The purpose of each chapter is to write the source files for one or more classes, the source files for one or more unit tests, and assure that a minimal set of API documentation is available.
Source Files. The source files are the most important deliverable. In effect, this is the working application program. Generally, you will be running this application from within your Integrated Development Environment (IDE). You may want to create a stand-alone program.
In the case of Java, we might also deliver the collection of class files. Additionally, we might bundle the class files into an executable JAR file. The source is the principle deliverable; anyone should be able to produce class and JAR files using readily available tools.
In the case of Python, it’s the packages of .py files. There really isn’t much more to deliver. The interested student might want to look at the Python distutils and setuptools to create a distribution kit, or possibly a Python .egg file.
Unit Test Files. The deliverables section of each chapter summarizes the unit testing that is expected, in addition to the classes to be built. We feel that unit testing is a critical skill, and emphasize it throughout the inividual exercises. We don’t endorse a particular technology for implementing the unit tests. There are several approaches to unit testing that are in common use.
For formal testing of some class, X, we create a separate class, TestX, which creates instances of X and exercises those instances to be sure they work. In Java, this is often done with JUnit. In Python, the unittest module is the mechanism for doing formal unit tests. Additionally, many Python developers also use the doctest module to assure that the sample code in the docstrings is actually correct. We cover these technologies in the appendices.
Documentation. The job isn’t over until the paperwork is done. In the case of Java and Python, the internal documentation is generally built from specially formatted blocks of comments within the source itself. Java programmers can use the javadoc tool to create documentation from the program source. Python programmers can use Epydoc (or sphinx) to create similar documentation.
In the first section, Roulette Game, we will present a summary of the game of Roulette as played in most American casinos.
We will follow this with a review the various bets available on the Roulette table in Available Bets in Roulette. The definition of the various bets is an interesting programming exercise, and the first four exercise chapters will focus on this.
In Some Betting Strategies, we will describe some common betting strategies that we will simulate. The betting strategies are interesting and moderately complex algorithms for changing the amount that is used for each bet in an attempt to recoup losses.
The game of Roulette centers around a wheel with thirty-eight numbered bins. The numbers include 0, 00 (double zero), 1 through 36. The table has a surface marked with spaces on which players can place bets. The spaces include the 38 numbers, plus a variety of additional bets, which will be detailed below.
After the bets are placed by the players, the wheel is spun by the house, a small ball is dropped into the spinning wheel; when the wheel stops spinning, the ball will come to rest in one of the thirty-eight numbered bins, defining the winning number. The winning number and all of the related winning bets are paid off; the losing bets are collected. Roulette bets are all paid off using odds, which will be detailed with each of the bets, below.
The numbers from 1 to 36 are colored red and black in an arbitrary pattern. They fit into various ranges, as well as being even or odd, which defines many of the winning bets related to a given number. The numbers 0 and 00 are colored green, they fit into none of the ranges, and are considered to be neither even nor odd. There are relatively few bets related to the zeroes. The geometry of the betting locations on the table defines the relationships between number bets.
Note
American Rules
There are slight variations in Roulette between American and European casinos. We’ll focus strictly on the American version.
There are a variety of bets available on the Roulette table. Each bet has a payout, which is stated as n :1 where n is the multiplier that defines the amount won based on the amount bet.
A $5 bet at 2:1 will win $10. After you are paid, there will be $15 sitting on the table, your original $5 bet, plus your $10 additional winnings.
Note
Odds
Not all games state their odds using this convention. Some games state the odds as “2 for 1”. This means that the total left on the table after the bets are paid will be two times the original bet. So a $5 bet will win $5, there will be $10 sitting on the table.
Roulette Table Layout
The table is divided into two classes of bets. The “inside” bets are the 38 numbers and small groups of numbers; these bets all have relatively high odds. The “outside” bets are large groups of numbers, and have relatively low odds. If you are new to casino gambling, see Odds and Payouts for more information on odds and why they are offered.
The following bets are the “outside” bets. Each of these involves a group of twelve to eighteen related numbers. None of these outside bets includes 0 or 00. The only way to bet on 0 or 00 is to place a straight bet on the number itself, or use the five-number combination bet.
Odds and Payouts
Not all of the Roulette outcomes are equal probability. Let’s compare a “split bet” on 1-2 and a even money bet on red.
- The split bet wins if either 1 or 2 comes up on the wheel. This is 2 of the 38 outcomes, or a 1/19 probability, 5.26%.
- The red bet wins if any of the 18 red numbers come up on the wheel. The is 18 of the 38 outcomes, or a 9/19 probability, 47.4%.
Clearly, the red bet is going to win almost ten times more often than the 1-2 bet. As an inducement to place bets on rare occurences, the house offers a higher payout on those bets. Since the 1-2 split bet wins is so rarely, they will pay you 17 times what you bet. On the other hand, since the red bet wins so frequently, they will only pay back what you bet.
You’ll notice that the odds of winning the 1-2 split bet is 1 chance in 19, but they pay you 17 times your bet. Since your bet is still sitting on the table, it looks like 18 times your bet. It still isn’t 19 times your bet. This discrepency between the actual probability and the payout odds is sometimes called the house edge. It varies widely among the various bets in the game of Roulette. For example, the 5-way bet has 5/38 ways of winning, but pays only 6:1. There is only a 13.2% chance of winning, but they pay you as if you had a 16.7% chance, keeping the 3.5% difference. You have a 5.26% chance to win a split bet, but the house pays as if it were a 5.88% chance, a .62% discrepency in the odds.
The smallest discrepency between actual chances of winning (47.4%) and the payout odds (50%) is available on the even money bets: red, black, even, odd, high or low. All the betting systems that we will look at focus on these bets alone, since the house edge is the smallest.
Perhaps because Roulette is a relatively simple game, elaborate betting systems have evolved around it. Searches on the Internet turn up a many copies of the same basic descriptions for a number of betting systems. Our purpose is not to uncover the actual history of these systems, but to exploit them for simple OO design exercises. Feel free to research additional betting systems or invent your own.
Martingale. The Martingale system starts with a base wagering amount, w, and a count of the number of losses, c, initially 0. Each loss doubles the bet.
Any given spin will place an amount of on a 1:1 proposition (for example, red). When a bet wins, the loss count is reset to zero; resetting the bet to the base amount, w. This assures that a single win will recoup all losses.
Note that the casinos effectively prevent successful use of this system by imposing a table limit. At a $10 Roulette table, the limit may be as low as $1,000. A Martingale bettor who lost six times in a row would be facing a $640 bet, and after the seventh loss, their next bet would exceed the table limit. At that point, the player is unable to recoup all of their losses. Seven losses in a row is only a 1 in 128 probability; making this a relatively likely situation.
Waiting. Another system is to wait until some number of losses have elapsed. For example, wait until the wheel has spun seven reds in a row, and then bet on black. This can be combined with the Martingale system to double the bet on each loss as well as waiting for seven reds before betting on black.
This “wait for a favorable state” strategy is based on a confusion between the outcome of each individual spin and the overall odds of given collections of spins. If the wheel has spun seven reds in a row, it’s “due” to spin black.
1-3-2-6 System. Another betting system is called the 1-3-2-6 system. The idea is to avoid the doubling of the bet at each loss and running into the table limit. Rather than attempt to recoup all losses in a single win, this system looks to recoup all losses by waiting for four wins in a row.
The sequence of numbers (1, 3, 2 and 6) are the multipliers to use when placing bets after winning. At each loss, the sequence resets to the multiplier of 1. At each win, the multiplier is advanced through the sequence. After one win, the bet is now . After a second win, the bet is reduced to
, and the winnings of
are “taken down” or removed from play. In the event of a third win, the bet is advanced to
. Should there be a fourth win, the player has doubled their money, and the sequence resets.
Cancellation. Another method for tracking the lost bets is called the Cancellation system or the Labouchere system. The player starts with a betting budget allocated as a series of numbers. The usual example is 1, 2, 3, 4, 5, 6, 7, 8, 9.
Each bet is sum of the first and last numbers in the last. In this case 1+9 is 10. At a win, cancel the two numbers used to make the bet. In the event of all the numbers being cancelled, reset the sequence of numbers and start again. For each loss, however, add the amount of the bet to the end of the sequence as a loss to be recouped.
Here’s an example of the cancellation system using 1, 2, 3, 4, 5, 6, 7, 8, 9.
A player could use the Fibonacci Sequence to structure a series of bets in a kind of cancellation system. The Fibonacci Sequence is 1, 1, 2, 3, 5, 8, 13, ...
At each loss, the sum of the previous two bets – the next numbers in the sequence – becomes the new bet amount. In the event of a win, we simply revert to the base betting amount. This allows the player to easily track our accumulated losses, with bets that could recoup those losses through a series of wins.
The first section, Preliminary Survey of Classes, is a survey of the classes gleaned from the general problem statement. Refer to Problem Statement as well as the problem details in Roulette Details. This survey is drawn from a quick overview of the key nouns in these sections.
We’ll amplify this survery with some details of the class definitions in Preliminary Roulette Class Structure.
Given this preliminary of the candidate classes, A Walkthrough of Roulette is a walkthrough of the possible design that will refine the definitions, and give us some assurance that we have a reasonable architecture. We will make some changes to the preliminary class list, revising and expanding on our survey.
We will also include a number of questions and answers about this preliminary design information. This should help clarify the design presentation and set the stage for the various development exercises in the chapters that follow.
To provide a starting point for the development effort, we have to identify the objects and define their responsibilities. The central principle behind the allocation of responsibility is encapsulation; we do this by attempting to isolate the information or isolate the processing that must be done. Encapsulation assures that the methods of a class are the exclusive users of the fields of that class. It also makes each class very loosely coupled with other classes; this permits change without a ripple through the application. For example, each Outcome contains both the name and the payout odds. That way each Outcome can be used to compute a winning amount, and no other element of the simulation needs to share the odds information or the payout calculation.
In a few cases, we have looked forward to anticipate some future considerations. One such consideration is the house rake, also known as the vigorish, vig, or commission. In some games, the house makes a 5% deduction from some payouts. This complexity is best isolated in the Outcome class. Roulette doesn’t have any need for a rake, since the presence of the 0 and 00 on the wheel gives the house a little over 5% edge on each bet. We’ll design our class so that this can be added later when we implement Craps.
In reading the background information and the problem statement, we noticed a number of nouns that seemed to be important parts of the game we are simulating.
One common development milestone is to be able to develop a class model in the Unified Modeling Language (UML) to describe the relationships among the various nouns in the problem statement. Building (and interpreting) this model takes some experience with OO programming. In this first part, we’ll avoid doing extensive modeling. Instead we’ll simply identify some basic design principles. We’ll focus in on the most important of these nouns and describe the kinds of classes that you will build.
We’ll summarize some of the classes and responsibilities that we can identify from the problem statement. This is not the complete list of classes we need to build. As we work through the exercises, we’ll discover additional classes and rework some of these preliminary classes more than once.
We’ll describe each class with respect to the responsibility allocated to the class and the collaborators. Some collabotors are used by an object to get work done. We have a number of “uses-used by” collaborative relationships among our various classes.
The class Player has the most important responsibility in the application, since we expect to update the algorithms this class uses to place different kinds of bets. Clearly, we need to cleanly encapsulate the Player, so that changes to this class have no ripple effect in other classes of the application.
A good preliminary task is to review these responsibilities to confirm that a complete cycle of play is possible. This will help provide some design details for each class. It will also provide some insight into classes that may be missing from this overview.
A good way to structure this task is to do a Class-Reponsibility-Collaborators (CRC) walkthrough.
As preparation, get some 5” x 8” notecards. On each card, write down the name of a class, the responsibilities and the collaborators. Leave plenty of room around the responsibilities and collaborators to write notes. We’ve only identified five classes, so far, but others always show up during the walkthrough.
During the walkthrough, we identify areas of responsibility, allocate them to classes of objects and define any collaborating objects. An area of responsibility is a thing to do, a piece of information, a result. Sometimes a big piece of responsibility can be broken down into smaller pieces, and those smaller pieces assigned to other classes. There are a lot of reasons for decomposing, the purpose of this book is to explore many of them in depth. Therefore, we won’t justify any of our suggestions until later in the book. For now, follow along closely to get a sense of where the exercises will be leading.
The basic processing outline is the responsibility of the Game class. To start, locate the Game card.
Our preliminary note was that this class “Runs the game.” The responsibilities section has a summary of four steps involved in running the game.
The first step is “gets bets from :class:Player`.” Find the Player card.
Does a Player collaborate with a Game to place bets? If not, update the cards as necessary to include this.
One of the responsibilities of a Player is to place bets. The step in the responsibility statement is merely “Places bets on :class:”Outcome`s.” Looking at the classes, we note that the Table contains the amounts placed on the Bets. Fix the collaboration information on the Player to name the Table class. Find the Table card.
Does a Table collaborate with a Player to accept the bets? If not, update the cards as necessary to include this.
What card has responsibility for the amount of the bet? It looks like Table. We note one small problem: the Table contains the collection of amounts bet on Outcomes.
What class contains the individual “amount bet on an Outcome?” This class appears to be missing. We’ll call this new class Bet and start a new card. We know one responsibility is to hold the amount bet on a particular Outcome.
We know three collaborators: the amount is paired with an Outcome, all of the Bet s are collected by a Table, and the Bet s are created by a Player. We’ll update all of the existing cards to name their collaboration with Bet.
What card has responsibility for keeping all of the Bets? Does Table list that as a responsibility? We should update these cards to clarify this collaboration.
You should continue this tour, working your way through spinning the Wheel to get a list of winning Outcomes. From there, the Game can get all of the Bets from the Table and see which are based on winning Outcomes and which are based on losing Outcomes. The Game can notify the Player of each losing Bet, and notify the Player of each winning Bet, using the Outcome to compute the winning amount.
This walkthrough will give you an overview of some of the interactions among the objects in the working application. You may uncover additional design ideas from this walkthrough. The most important outcome of the walkthrough is a clear sense of the responsibilities and the collaborations required to create the necessary application behavior.
Why does the Game class run the sequence of steps? Isn’t that the responsibility of some “main program?”
Coffee Shop Answer. We haven’t finished designing the entire application, so we need to reflect our own ignorance of how the final application will be assembled from the various parts. Rather than allocate too many responsibilities to Game, and possibly finding conflicts or complication, we’d rather allocate too few responsibilities until we know more.
From another point of view, designing the main program is premature because we haven’t finished designing the entire application. We anticipate a Game object being invoked from some statistical data gathering object to run one game. The data gathering object will then get the final stake from the player and record this. Game ‘s responsibilities are focused on playing the game itself. We’ll need to add a responsibility to Game to collaborate with the data gathering class to run a number of games as a “session”.
Deeper Answer. In procedural programming (especially in languages like COBOL), the “main program” is allocated almost all of the responsibilities. These procedural main programs usually contain a number of elements, all of which are very tightly coupled. We have seen highly skilled programmers who are able to limit the amount of work done in the main program, even in procedural languages. In OO languages, it becomes possible for even moderately skilled programmers to reduce the main program to a short list of object constructors, with the real work delegated to the objects. We find that “main program” classes are relatively hard to reuse, and prefer to keep them as short as possible.
Why is Outcome a separate class? Each object that is an instance of Outcome only has two attributes; why not use an array of Strings for the names, and a parallel array of integers for the odds?
Representation. We prefer not to decompose an object into separate data elements. If we do decompose this object, we will have to ask which class would own these two arrays? If Wheel keeps these, then Table becomes very tightly coupled to these two arrays that should be Wheel ‘s responsibility. If Table keeps these, then Wheel is priviledged to know details of how Table is implemented. If we need to change these arrays to another storage structure, two classes would change instead of one.
Having the name and odds in a single Outcome object allows us to change the representation of an Outcome. For example, we might replace the String as the identification of the outcome, with a collection of the individual numbers that comprise this outcome. This would identify a straight bet by the single winning number; an even money bet would be identified by an array of the 18 winning numbers.
Responsibility. he principle of isolating responsibility would be broken by this “two parallel arrays” design because now the Game class would need to know how to compute odds. In more complex games, there would be the added complication of figuring the rake. Consider a game where the Player‘s strategy depends on the potential payout. Now the Game and the Player both have copies of the algorithm for computing the payout. A change to one must be paired with a change to the other.
The alternative we have chosen is to encapsulate the payout algorithm along with the relevant data items in a single bundle.
If Outcome encapsulates the function to compute the amount won, isn’t it just a glorified subroutine?
In a limited way, yes. A class can be thought of as a glorified subroutine library that captures and isolates data elements along with their associated functions. For some new designers, this is a helpful summary of the basic principle of encapsulation. Inheritance and subclasses, however, make a class more powerful than a simple subroutine library with private data. Inheritance is a way to create a family of closely-related subroutine libraries in a simple way that is validated by the compiler.
What is the distinction between an Outcome and a Bet?
We need to describe the propositions on the table on which you can place bets. The propositions are distinct from an actual amount of money wagered on a proposition. There are a lot of terms to choose from, including bet, wager, proposition, place, location, or outcome. We opted for using Outcome because it seemed to express the open-ended nature of a potential outcome, different from an amount bet on a potential outcome. In a way, we’re considering the Outcome as an abstract possibility, and the Bet as a concrete action taken by a player.
Also, as we expand this simulation to cover other games, we will find that the randomized outcome is not something we can directly bet on. In Roulette, however, all outcomes are something we can be bet on, as well as a great many combinations of outcomes. We will revisit this design decision as we move on to other games.
Why are the classes so small?
First-time designers of OO applications are sometimes uncomfortable with the notion of emergent behavior. In procedural programming languages, the application’s features are always embodied in a few key procedures. Sometimes a single procedure, named main.
A good OO design partitions responsibility. In many cases, this subdivision of the application’s features means that the overall behavior is not captured in one central place. Rather, it emerges from the interactions of a number of objects.
We have found that smaller elements, with very finely divided responsibilities, are more flexible and permit change. If a change will only alter a portion of a large class, it can make that portion incompatible with other portions of the same class. A symptom of this is a bewildering nest of if-statements to sort out the various alternatives. When the design is decomposed down more finely, a change can be more easily isolated to a single class. A much simpler sequence of if-statements can be focused on selecting the proper class, which can then simply carry out the desired functions.
In addition to defining the fundamental Outcome on which all gambling is based, this chapter provides a sidebar discussion on the notion of object identity and object equality. This is important because we will be dealing with a number of individual Outcome objects, and we need to be sure we can test for equality of two different objects. This is different from the test for identity.
The first class we will tackle is a small class that encapsulates each outcome. This class will contain the name of the outcome as a String, and the odds that are paid as an integer. We will use these objects when placing a bet and also when defining the Roulette wheel.
There will be several hundred instances of this class on a given Roulette table. The bins on the wheel, similarly, collect various Outcomes together. The minimum set of Outcome instances we will need are the 38 numbers, Red and Black. The other instances add details to our simulation.
In Roulette, the amount won is a simple multiplication of the amount bet and the odds. In other games, however, there may be a more complex calculation because the house keeps 5% of the winnings, called the “rake”. While it is not part of Roulette, it is good to have our Outcome class designed to cope with these more complex payout rules.
Also, we know that other casino games, like Craps, are stateful. An Outcome may change the game state. We can foresee reworking this class to add in the necessary features to change the state of the game.
While we are also aware that some odds are not stated as x:1, we won’t include these other kinds of odds in this initial design. Since all Roulette odds are x:1, we’ll simply assume that the denominator is always 1. We can forsee reworking this class to handle more complex odds, but we don’t need to handle the other cases yet.
Our design will depend on matching Outcome objects. We’ll be testing objects for equality.
The player will be placing bets that contain Outcomes; the table will be holding bets. The wheel will select the winning Outcomes. We need a simple test to see if two objects of the Outcome class are the same.
Was the Outcome for a bet equal to the Outcome contained in a spin of the wheel?
It turns out that this comparison between objects has some subtlety to it.
Outcomes have Names. Since each instance of Outcome has a distinct Outcome.name attribute, it seems simple enough to compare names. This is one sense of “equal” that seems to be appropriate.
To do object comparison correclty in Python, we must provide the __eq__() and __ne__() method which compares the Outcome.name attribute.
However, simply comparing outcome names isn’t – in the long run – going to work out well.
More than equal. We’ll be creating collections of Outcome objects, and we may need to create sets or maps where hash codes are used in addition to the simple equality tests.
As we look forward, the Python set and dict depend on a __hash__() method and an __eq__() method of each object in the collection.
The Hash Code Problem. Every object has a hash code. The hash code is simply a unique integer, perhaps the address of the object, perhaps some summary of the bits that make up the object. The default rule is this:
Distinct objects will have distinct hash codes
The default rule makes it possible for us to accidentally create objects that appear to be the same thing, but – internally – have different hash codes.
In Python, if we do nothing special, the __eq__() test will simply compare the object id values. These object id values are unique to each distinct object, irrespective of the attribute values.
This default behavior of objects is shown by the following example:
Object Identity
Each individual Outcome object has a distinct distinct hashcode. This makes them not equal according to the default methods inherited from object. However, we would like to have two of these objects test as equal.
This example shows that we can have two objects that appear equal, but don’t compare as equal.
Layers of Meaning. The real issue is that we have three distinct layers of meaning for comparing objects to see if they are “equal”.
Compare as Equal. We can call this “attribute equality”.
The __eq__() method returns True. When we use the == operator, this is evaluated by using the __eq__() method. This must be overridden by a class to implement attribute equality.
Have the same hash code. We can call this “hash equality”. This has to include attribute equality.
The __hash__(self)() method for several objects that represent the same Outcome have the same hash code.
Are references to the same object. We can call this “identity”.
We can test that two objects are the same by using the is comparison between two objects.
When we use the is comparison, we’re asserting that the two variables are references to the same object. This is the identity comparison.
If we pursue this as an implementation, we have to be sure we don’t casually create instances of Outcome. Rather than create them all over our application, we need to have a single source for the “official” instances of Outcome.
Problem. Which should we implement, hash equality or object identity?
Forces. There are two broad implementation choices for making sure that our objects both provide appropriate hash values and pass equality tests.
Object Identity. We can make sure that all of the parts of our application share the same Outcome objects. Two references to the same object will pass any identity test and will also have the same hash code.
This requires that we have a pool of outcomes and each Outcome is – effectively – a Singleton instance. We have to be sure that our application has only one instance of Outcome( "1", 35 ), and that object is shared by the Wheel, the Player and any Bets that are made.
We have to be sure to never create additional Outcome objects; there would be confusion between two discrete instances that happened to have the same name and odds.
We have to avoid casually creating new instances of the Outcome class.
Assuring that we work with single instances of each Outcome fits with the Don’t Repeat Yourself (DRY) principle: we only create each Outcome once.
Hash Equality. We can make sure that all instances of an Outcome act like they are the same object. That is, they have the same hash value and they test true for equality. They may not be two references to the same underlying object, but they pass the hash and equality tests, making them equal for all practical purposes.
This allows us to create additional Outcome objects, confident they will behave appropriately.
This, however, also requires that we include the odds when creating an outcome. This gets wordy and unpleasant because we have the various outcomes and odds stated in more than one place in our application. This would break the Don’t Repeat Yourself (DRY) principle.
The DRY principle is so important that this alternative is really unacceptable.
Solution. We have to assure that we’re sharing single instances of Outcome objects. We have several choices for assuring that we have exactly one instance of each Outcome.
Global Outcome Objects. We can declare global variables for the various outcomes and use those global objects as needed.
Generally, globals variables are often undesirable because changes to those variables can have unexpected consequences in a large application.
Global constants are no problem at all. The pool of Outcome instances are proper constant values used to create bins and bets.
Outcome Factory Object. We can create a class which is a Factory for individual Outcome objects. When some part of the application asked for an Outcome which didn’t yet exist, the Factory would create it, save it, and return a reference to it. When some part of the application asked for an Outcome which already exists, the Factory would return a reference to the existing object.
This centralizes the pool of global objects into a single object, the Factory.
Singleton Outcome Class. A Singleton class creates and maintains a single instance of itself. This requires that the class have a static getInstance() method that is a reference to the one-and-only instance of the class.
This saves us from creating global variables. Instead, each class definition contains it’s own private reference to the one-and-only object of that class.
However, this has the profound disadvantage that each distinct outcome would need to be a distinct subclass of Outcome. This is an unappealing level of complexity.
All of these are acceptable techniques for implementing object identity. We don’t have to choose one at the current time.
Consequences. The most important consequence of this design decision is that we’re going to evenually create some global definitions of Outcomes, or a Factory object that centralizes Outcome creation.
We may also need to add the necessary static variable and static getInstance() method.
Outcome contains a single outcome on which a bet can be placed.
In Roulette, each spin of the wheel has a number of Outcomes with bets that will be paid off.
For example, the “1” bin has the following winning Outcomes: “1”, “Red”, “Odd”, “Low”, “Column 1”, “Dozen 1-12”, “Split 1-2”, “Split 1-4”, “Street 1-2-3”, “Corner 1-2-4-5”, “Five Bet”, “Line 1-2-3-4-5-6”, “00-0-1-2-3”, “Dozen 1”, “Low” and “Column 1”. All of these bets will payoff if the wheel spins a “1”.
Holds the name of the Outcome. Examples include "1", "Red".
Holds the payout odds for this Outcome. Most odds are stated as 1:1 or 17:1, we only keep the numerator (17) and assume the denominator is 1.
We can use name to provide hash codes and do equality tests.
Sets the instance name and odds from the parameter name and odds.
For now, we’ll assume that we’re going to have global instances of each Outcome.
Multiply this Outcome‘s odds by the given amount. The product is returned.
Compare the name attributes of self and other.
Compare the name attributes of self and other.
Easy-to-read representation of this outcome.
Python formatting is most easily done with the % operator. For some tips on how to do this, see Message Formatting.
This easy-to-read String output method is essential. This should return a String representation of the name and the odds. A form that looks like 1-2 Split (17:1) works nicely.
There are two deliverables for this exercise. Both will have Javadoc comments or Python docstrings.
This chapter will present the design for the Bin class. In addition to that, we’ll examine the collection classes available in Java and Python. We’ll also present present some questions and answers on this particular class and the process of creating a design.
The Roulette wheel has 38 bins, identified with a number and a color. Each of these bins defines a number of closely related winning Outcome s. At this time, we won’t enumerate each of the 38 Bins of the wheel and each of the winning Outcomes (from two to fourteen in each Bin); we’ll save that for a later exercise.
At this time, we’ll define the Bin class, and use this class to contain a number of Outcome objects.
Two of the Bins have relatively few Outcomes. Specifically, the 0 Bin only contains the basic “0” Outcome and the “00-0-1-2-3” Outcome . The 00 Bin , similarly, only contains the basic “00” Outcome and the “00-0-1-2-3” Outcome .
The other 36 Bins contain the straight bet, split bets, street bet, corner bets, line bets and various outside bets (column, dozen, even or odd, red or black, high or low) that will win if this Bin is selected. Each number bin has from 12 to 14 individual winning Outcomes.
Some Outcomes, like “red” or “black”, occur in as many as 18 individual Bins. Other Outcomes, like the straight bet numbers, each occur in only a single Bin. We will have to be sure that our Outcome objects are shared appropriately by the Bins.
Since a Bin is just a collection of individual Outcome objects, we have to select a collection class to contain the objects. In Java we have five basic choices, with some variations based on performance needs. In Python, we have two basic choices.
There are five basic Python types that are a containers for other objects.
Having looked at the fundamental collection varieties, we will elect to use a frozenset.
Why wasn’t Bin in the design overview?
The definition of the Roulette game did mention the 38 bins of the wheel. However, when identifying the nouns, it didn’t seem important. Then, as we started designing the Wheel class, the description of the wheel as 38 bins came more fully into focus. Rework of the preliminary design is part of detailed design. This is the first of several instances of rework.
Why introduce an entire class for the bins of the wheel? Why can’t the wheel be an array of 38 individual arrays?
There are two reasons for introducing Bin as a separate class: to improve the fidelity of our object model of the problem, and to reduce the complexity of the Wheel class. The definition of the game describes the wheel as having 38 bins, each bin causes a number of individual Outcomes to win. Without thinking too deeply, we opted to define the Bin class to hold a collection of Outcomes. At the present time, we can’t foresee a lot of processing that is the responsibility of a Bin. But allocating a class permits us some flexibility in assigning responsibilities there in the future.
Additionally, looking forward, it is clear that the Wheel class will use a random number generator and will pick a winning Bin. In order to keep this crisp definition of responsibilities for the Wheel class, it makes sense to delegate all of the remaining details to another class.
Isn’t an entire class for bins a lot of overhead?
The short answer is no, class definitions are almost no overhead at all. Class definitions are part of the compiler’s world; at run-time they amount to a few simple persistent objects that define the class. It’s the class instances that cause run-time overhead.
In a system where were are counting individual instruction executions at the hardware level, this additional class may slow things down somewhat. In most cases, however, the extra few instructions required to delegate a method to an internal object is offset by the benefits gained from additional flexibility.
How can you introduce Set, List, Vector when these don’t appear in the problem?
We have to make a distinction between the classes that are uncovered during analysis of the problem in general, and classes are that just part of the implementation of this particular solution. This emphasizes the distinction between the problem as described by users and a solution as designed by software developers. The collections framework are part of a solution, and hinted at by the definition of the problem. Generally, these solution-oriented classes are part of frameworks or libraries that came with our tools, or that we can license for use in our application. The problem-oriented classes, however, are usually unique to our problem.
Bin contains a collection of Outcomes which reflect the winning bets that are paid for a particular bin on a Roulette wheel. In Roulette, each spin of the wheel has a number of Outcome s. Example: A spin of 1, selects the “1” bin with the following winning Outcomes: “1” , “Red” , “Odd” , “Low” , “Column 1” , “Dozen 1-12” , “Split 1-2” , “Split 1-4” , “Street 1-2-3” , “Corner 1-2-4-5” , “Five Bet” , “Line 1-2-3-4-5-6” , “00-0-1-2-3” , “Dozen 1” , “Low” and “Column 1” . These are collected into a single Bin .
A frozenset that holds the collection of individual Outcomes.
Python programmers should provide an initializer that uses the * modifier so that all of the individual arguments appear as a single list within the initializer.
This constructor can be used as follows.
Python Bin Construction
Adds an Outcome to this Bin. This can be used by a builder to construct all of the bets in this Bin. Since this class is really just a façade over the underlying collection object, this method could simply delegate the real work to the underlying collection.
Note that a frozenset is immutable; unlike a list it does not have an append() method. Instead, a new frozenset can be constructed by using the | operator which creates a new frozenset from a frozenset and a frozenset or set
>>> zero= Outcome("0",35)
>>> zerozero= Outcome("00",35)
>>> b = frozenset( [zero] )
>>> b
frozenset([<roulette.Outcome object at 0x6002d0>])
>>> map(str,b)
['0 (35:1)']
>>> b |= set( [zerozero] )
>>> map(str,b)
['0 (35:1)', '00 (35:1)']
>>> b
frozenset([<roulette.Outcome object at 0x6002d0>, <roulette.Outcome object at 0x600330>])
An easy-to-read representation of the list of Outcomes in this Bin.
A handy technique for displaying collections is the following. This maps the str() function to each element of Bin.outcomes, then joins the resulting string with ", " separators
', '.join( map(str,self.outcomes) )
There are two deliverables for this exercise. Both will have Javadoc comments or Python docstrings.
The Bin class.
A class which performs a unit test of the Bin class. The unit test should create several instances of Outcome, two instances of Bin and establish that Bin s can be constructed from the Outcomes.
Programmers who are new to OO techniques are sometimes confused when reusing individual Outcome instances. This unit test is a good place to examine the ways in which object references are shared. A single Outcome object can be referenced by several Bins. We will make increasing use of this in later sections.
This chapter builds on the previous two chapters, creating a more complete composite object from the Outcome and Bin classes we have already defined. We’ll introduce some basic subclass constructor techniques, also.
The wheel has two responsibilities: it is a container for the Bins and it picks one Bin at random. We’ll also have to look at how to initialize the various Bins that comprise a standard Roulette wheel.
Since the Wheel is 38 Bins, it is a collection. We can review our survey of available collections in Design Decision – Choosing A Collection for some guidance here.
In this case, the choice of the winning Bin will be selected by a random numeric index. We need some kind of sequential collection.
This makes an immutable tuple very appealing. This is a subclass of collections.Sequence and has the features we’re looking for.
One consequence of using a sequential collection is that we have to choose an index for the various Bins. Each Bin contains a variety of individual Outcomes. However, each single number Outcome will be unique to each Bin.
The index values of 1 to 36 become the index to their respective Bins. The Bin at index 1 is the only bin which contains Outcome( "1", 35 ).
We have a small problem, however, with 0 and 00: we need two separate indexes. While 0 is a valid index, what do we do with 00?
Enumerate some possible solutions before reading on.
Since the index of the Bin doesn’t have any significance at all, we can assign the Bin that has the 00 Outcome to position 37 in the Vector. This gives us a unique place for all 38 Bins.
In order for the Wheel to select a Bin at random, we’ll need a random number from 0 to 37 that we can use an an index.
Python programmers can use the random module. This module offers a Random.choice() function which picks a random value from a sequence. This is ideal for returning a randomly selected Bin from our list of Bins.
Testability. Note that testing a class using random numbers isn’t really the best policy. To do testing properly, we’ll need to create a non-random random number generator that we can use in place of the published library random number generator.
To create a non-random random-number generator, we can so something like the following.
Each instance of Bin has a list of Outcomes. The 0 and 00 Bin s only have two Outcome s. The other numbers have anywhere from twelve to fourteen Outcomes.
Constructing the entire collection of Bins would be a tedious undertaking. We’ll apply a common OO principle of deferred binding and work on that algorithm later, after we have the basic design for the Wheel finished.
Wheel contains the 38 individual bins on a Roulette wheel, plus a random number generator. It can select a Bin at random, simulating a spin of the Roulette wheel.
Contains the individual Bin instances.
This is a tuple of 38 elements. This can be built with tuple( Bin() for i in range(38) )
We need a controlled kind of random number generation for testing purposes.
We’ll define a class NonRandom that extends random.Random, but provides a more testable sequence of values. One approach is to simply return a given integer value.
The non-random value to return.
Creates a non-random “random” number generator.
Saves this value as the next value to return.
Use the given seed value as an index and return the requested item from the sequence.
There are three deliverables for this exercise. The new class and the unit test will have Javadoc comments or Python docstrings.
This is a rather long chapter, which describes a number of design considerations surrounding Outcome, Bin and Wheel. The second section presents a number of algorithms to group Outcomes based on the geometry of the table. These algorithms are presented at a high level, leaving much of the detailed design to the student.
It is clear that enumerating each Outcome in the 38 Bins is a tedious undertaking. Most Bins contain about fourteen individual Outcomes.
It is often helpful to create a class that is used to build an instance of another class. This is a design pattern sometimes called a Builder. We’ll design an object that builds the various Bins and assigns them to the Wheel. This will fill the need left open in the Wheel Class.
Additionally, we note that the complex algorithms to construct the Bins are only tangential to the operation of the Wheel object. While not essential to the design of the Wheel class, we find it is often helpful to segregate these rather complex builder methods into a separate class.
The BinBuilder class will have a method that enumerates the contents of each of the 36 number Bins, building the individual Outcome instances. We can then assign these Outcome objects to the Bins of a Wheel instance. We will use a number of steps to create the various types of Outcomes, and depend on the Wheel to assign each Outcome object to the correct Bin.
The Roulette Outcomes. Looking at the Available Bets in Roulette gives us a number of geometric rules for determining the various Outcomes that are combinations of individual numbers. These rules apply to the numbers from one to thirty-six. A different – and much simpler – set of rules applies to 0 and 00. First, we’ll survey the table geometry, then we’ll develop specific algorithms for each kind of bet.
The Bins for zero and double zero can easily be enumerated. Each bin has a straight number bet Outcome, plus the Five Bet Outcome (00-0-1-2-3, which pays 6:1).
One other thing we’ll probably want are handy names for the various kinds of odds. While can define an Outcome as Outcome( "Number 1", 35 ) , this is a little opaque. A slightly nicer form is Outcome( "Number 1", RouletteGame.StraightBet ). These are specific to a game, not general features of all Outcomes. We haven’t designed the game yet, but we can provide a stub class with these these outcome odds definitions.
This section provides the algorithms for nine kinds of bets.
Straight bet Outcomes are the easiest to generate.
Split bet Outcomes are more complex because of the various cases: corners, edges and down-the-middle.
We note that there are two kinds of split bets:
We can look at the number 5 as being part of 4 different pairs: (4,4+1), (5,5+1), (2,2+3), (5,5+3). The corner number 1 is part of 2 split bets: (1,1+1), (1,1+3).
We can generate the “left-right” split bets by iterating through the left two columns; the numbers 1, 4, 7, ..., 34 and 2, 5, 8, ..., 35.
For All Rows. For each row, r, where
:
First Column Number. Set
. This will create values 1, 4, 7, ..., 34.
Column 1-2 Split. Create a “n, n +1” split Outcome with odds of 17:1.
Assign to Bins. Associate this object with two Bins: n and n +1.
Second Column Number. Set
. This will create values 2, 5, 8, ..., 35.
Column 2-3 Split. Create a “n , n +1” split Outcome.
Assign to Bins. Associate this object to two Bins: n and n +1.
A similar algorithm must be used for the numbers 1 through 33, to generate the “up-down” split bets. For each number, n, we generate a “n, n +3” split bet. This Outcome belongs to two Bins: n and n +3.
Street bet Outcomes are very simple.
We can generate the street bets by iterating through the twelve rows of the layout.
Corner bet Outcomes are as complex as split bets because of the various cases: corners, edges and down-the-middle.
Eacn corner has four numbers, n , n +1, n +3, n +4. This is two numbers in the same row, and two numbers in the next higher row.
We can generate the corner bets by iterating through the numbers 1, 4, 7, ..., 31 and 2, 5, 8, ..., 32. For each number, n, we generate four corner bets: “n , n +1, n+3 , n +4`” corner bet. This Outcome object belongs to four Bins.
We generate corner bets by iterating through the various corners based on rows and columns. There is room for two corners within the three columns of the layout: one corner starts at column 1 and the other corner starts at column 2. There is room for 11 corners within the 12 rows of the layout.
For All Lines Between Rows. For each row, r,
:
First Column Number. Set
. This will create values 1, 4, 7, ..., 31.
Column 1-2 Corner. Create a “n , n +1, n +3, n +4” corner Outcome with odds of 8:1.
Assign to Bins. Associate this object to four Bins: n, n +1, n +3, n +4.
Second Column Number. Set
. This will create values 2, 5, 8, ..., 32.
Column 2-3 Corner. Create a “n , n +1, n +3, n +4`” corner Outcome withs odds of 8:1.
Assign to Bins. Associate this object to four Bins: n, n +1, n +3, n +4.
Line bet Outcomes are similar to street bets. However, these are based around the 11 lines between the 12 rows.
For lines s numbered 0 to 10, the numbers on the line bet can be computed as follows: ,
,
,
,
,
. This Outcome object belongs to six individual Bins.
Dozen bet Outcomes require enumerating all twelve numbers in each of three groups.
Column bet Outcomes require enumerating all twelve numbers in each of three groups. While the outline of the algorithm is the same as the dozen bets, the enumeration of the individual numbers in the inner loop is slightly different.
The even money bet Outcomes are relatively easy to generate.
Create the Red outcome, with odds of 1:1.
Create the Black outcome, with odds of 1:1.
Create the Even outcome, with odds of 1:1.
Create the Odd outcome, with odds of 1:1.
Create the High outcome, with odds of 1:1.
Create the Low outcome, with odds of 1:1.
For All Numbers. For each number, n,
:
Low? If
, associate the low Outcome with Bin n.
High? Otherwise,
, associate the high Outcome with Bin n.
Even? If
, associate the even Outcome with Bin n.
Odd? Otherwise,
, associate the odd Outcome with Bin n.
Red? If n is one of 1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, or 36, associate the red Outcome with Bin n.
BinBuilder creates the Outcomes for all of the 38 individual Bin on a Roulette wheel.
Initializes the BinBuilder.
Creates the Outcome instances and uses the addOutcome() method to place each Outcome in the appropropriate Bin of wheel .
There should be separate methods to generate the straight bets, split bets, street bets, corner bets, line bets, dozen bets and column bets, even money bets and the special case of zero and double zero.
Each of the methods will be relatively simple and easy to unit test. Details are provided in Bin Builder Algorithms.
There are three deliverables for this exercise. The new classes will have Javadoc comments or Python docstrings.
An an advanced topic, we need to avoid hard coding the names of the bets. Both Java and Python provide extensive tools for localization (l10n) of programs. Since both applications already use Unicode strings, they support non-Latin characters, handling much of the internationalization (i18n) part of the process.
Python localization depends on the locale and gettext modules. The locale module provides a number of functions and constants to help format dates and times for the user’s selected locale. The gettext module provides a mechanism for getting translated text from a message catalog with messages in a variety of languages.
We won’t dwell on the l10n issue. However, the right preparation for l10n is to isolate all Strings used for messages, and format all dates and numbers with formatters found in the locale module. In this case, our Outcome names may be displayed, and should be isolated into a separate object. Even something as simple as blackBetName = _("Black") will set the stage for fetching strings from a gettext message catalog.
In order to define the _(string) function, the following fragment should be used. While not ubiquitous in Python programs, doing this now establishes a standard practice that will permit easy localization of an application program.
In addition to the design of the Bet class, this chapter also presents some additional questions and answers on the nature of an object, identity and state change. This continues some of the ideas from Design Decision – Object Identity.
A Bet is an amount that the player has wagered on a specific Outcome. This class has the responsibilty for maintaining the association between an amount, an Outcome, and a specific Player.
This is the classic record declaration: a passive association among data elements. The only methods we can see are three pairs of getters and setters to get and set each of the three attributes.
The general scenario is to have a Player construct a number of Bet instances. The wheel is spun to select a winning Bin. Then each of the Bet objects will be checked to see if they are winners or losers.
A winning Bet has an Outcome that matches one in the winning Bin; winners will return money to the Player. All other bets aren’t in the winning Bin; they are losers, which removes the money from the Player.
Locating Outcomes. We have a design decision to make. Do we create a fresh Outcome object with each Bet or do we locate an existing Outcome object?
Building a Bet involves two parts: an Outcome and an amount.
Problem. Do we get an create an Outcome object with a Bet? Or do we locate an Outcome object in some collection or as a variable?
Forces. One option is to create an Outcome object as part of constructing a Bet object.
Here’s what it might look like in Python.
One unfortunate feature of this is that we have to repeat the odds when creating an Outcome. This violates the DRY principle.
The other option is to locate an existing Outcome object as part of creating a Bet instance.
Here’s what it might look like in Python.
Solution. We want to get a complete Outcome from just the name of the outcome. The will prevent repeating the odds information.
Consequence. There are several consequences to this decision.
If the builder and maintainer are the same object, then things would be somewhat simpler because all the responsibilities would fall into a single place.
Building a Bet involves two parts: an Outcome and an amount. Since we can’t create an outcome, we need to get an outcome from some other object. There are several objects that could contain this Outcome map.
Problem. What class contains the mapping from name to Outcome so we can reuse references to those objects?
Forces. In Outcome Class we looked at three ways to achieve a single instance of an Outcome. This assured that we could have multiple references to a single instance of an Outcome. We’ll modify that list slightly and reuse it here.
Global Outcome Mapping. We can declare some global mapping object to keep references to out Outcomes. This object is more-or-less immutable, once the initial set of Outcomes have been built.
It’s not a global variable, so it is a usable technique.
Outcome Factory Object. We can define a class which produces references to Outcomes as needed. By using this object, we can be sure we’re getting a reference to the one-and-only instance of the Outcome.
The Outcome Class Itself. We can define the Outcome class to retain a static mapping to each Outcome that gets created. By using the static Outcome.getInstance() method, we can be sure we’re getting a reference to the one-and-only instance of the Outcome.
This, however, limits our ability to create subclasses of Outcome.
After creating the BinBuilder, we can see that we – in effect – chose the Factory design for creating Outcome instances.
However, the class:BinBuilder doesn’t – currently – have a handy mapping so that we can look up an Outcome based on the name of the outcome. But is this the right place to do the lookup? What about the Wheel?
Alternative Solutions. We have a number of potential ways to gather all Outcome objects that were created by the BinBuilder.
Clearly, the BinBuilder can create the mapping from name to each distinct Outcome. To do this, we’d have to do several things.
First, we expand the BinBuilder to keep a simple Map of the various Outcomes that are being assigned via the Wheel.add() method.
Second, we would have to add specific Outcome getters to the BinBuilder. We could, for example, include a getOutcome() method that returns an Outcome based on its name.
Here’s what it might look like in Python.
Access the Wheel. A better choice is to get Outcome obects from the Wheel. To do this, we’d have to do several things.
First, we expand the Wheel to keep a simple Map of the various Outcomes created by the BinBuilder. This Map would be maintained by the Wheel.add().
Second, we would have to add specific Outcome getters to the Wheel. We could, for example, include a getOutcome() method that returns an Outcome based on its name.
In Python, for example, we might a a method function like the following to Wheel.
Solution. The allocation of responsibility seems to be a toss-up. We can see that the amount of programming is almost identical. This means that the real question is one of clarity: which allocation more clearly states our intention?
The Wheel is a first-class part of the game of Roulette. It showed up in our initial noun analysis. The BinBuilder was an implementation convenience to separate the one-time construction of the Bins from the overall work of the Wheel.
Since Wheel is a first-class part of the problem, we should augment the Wheel to keep track of our individual Outcome objects by name.
Why not update each Outcome with the amount of the bet?
We are isolating the static definition of the Outcome from the presence or absence of an amount wagered. Note that the Outcome is shared by the wheel’s Bin s, and the available betting spaces on the Table, possibly even the Player class. Also, if we have multiple Player, then we need to distinguish bets placed by the individual players.
Changing a field’s value has an implication that the thing has changed state. In Roulette, there isn’t any state change in the definition of an Outcome. However, when we look at Craps, we will see that changes in the game’s state will enable and disable whole sets of Outcome s.
Does an individual bet really have unique identity? Isn’t it just anonymous money?
Yes, the money is anonymous. In a casino, the chips all look alike. However, the placement of the bet, really does have unique identity. A Bet is owned by a particular player, it lasts for a specific duration, it has a final outcome of won or lost. When we want to create summary statistics, we could do this by saving the individual Bet objects. We could update each Bet with a won or lost indicator, then we can total the wins and losses.
This points up another reason why we know a Bet is an object in its own right: it changes state. A bet that has been placed can change to a bet that was won or a bet that was lost.
Bet associates an amount and an Outcome. In a future round of design, we can also associate a Bet with a Player.
Create a new Bet of a specific amount on a specific outcome.
For these first exercises, we’ll omit the Player. We’ll come back to this class when necessary, and add that capability back in to this class.
Uses the Outcome‘s winAmount to compute the amount won, given the amount of this bet. Note that the amount bet must also be added in. A 1:1 outcome (e.g. a bet on Red) pays the amount bet plus the amount won.
Returns the amount bet as the amount lost. This is the cost of placing the bet.
Returns a string representation of this bet. Note that this method will delegate the much of the work to the __str__() method of the Outcome.
There are four deliverables for this exercise. The new classes will have Javadoc comments or Python docstrings.
This section provides the design for the Table to hold the bets. It also introduces the concepts behind exception handling, and the proper role of exceptions.
The Table has the responsibility to keep the Bets created by the Player. Additionally, the house imposes table limits on the minimum amount that must be bet and the maximum that can be bet. Clearly, the Table has all the information required to evaluation these conditions.
Note
Betting Constraints
Casinos prevent the Martingale betting system from working by imposing a table limit on each game. To cover the cost of operating the table game, the casino also imposes a minimum bet. Typically, the maximum is a multiplier of the minimum bet, often in the range of 10 to 50; a table with a $5 minimum might have a $200 limit, a $10 minimum may have only a $300 limit.
It isn’t clear where the responsibility lies for determining winning and losing bets. The money placed on Bets on the Table is “at risk” of being lost. If the bet is a winner, the house pays the Player an amount based on the Outcome‘s odds and the Bet‘s amount. If the bet is a loser, the amount of the Bet is forfeit by the Player. Looking forward to stateful games like Craps, we’ll place the responsibility for determining winners and losers with the game, and not with the Table object.
We’ll wait, then, until we write the game to finalize paying winning bets and collecting losing bets.
Winning vs. Losing. Our second open question is the timing of the payment for the bet from the player’s stake. In a casino, the payment to the casino – effectively – happens when the bet is placed on the table. In our Roulette simulation, this is a subtlety that doesn’t have any practical consequences. We could deduct the money as part of Bet creation, or we could deduct the money as part of resolving the spin of the wheel. In other games, however, there may several events and several opportunities for placing additional bets. For example, splitting a hand in blackjack, or placing additional odds bets in Craps.
Because we can’t allow a player to bet more than their stake, we should deduct the payment as the Bet is created.
A consequence of this is a change to our definition of the Bet class. We don’t need to compute the amount that is lost. We’re not going to deduct the money when the bet resolved, we’re going to deduct the money from the Player‘s stake as part of creating the Bet. This will become part of the design of Player and Bet.
Looking forward a little, a stateful game like Craps will introduce a subtle distinction that may be appropriate for a future subclass of Table. When the game is in the point off state, some of the bets on the table are not allowed, and others become inactive. When the game is in the point on state, all bets are allowed and active. In Craps parlance, some bets are “not working” or “working” depending on the game state. This does not apply to the version of Table that will support Roulette.
Container Implementation. A Table is a collection of Bets. We need to choose a concrete class for the collection of the bets. We can review the survey of collections in Design Decision – Choosing A Collection for some guidance here.
In this case, the bets are placed in no particular order, and are simply visited in an arbitrary order for resolution. Bets don’t have specific names.
Since the number of bets varies, we can’t use a Python tuple; a list will do.
Table Limits. Table limits can be checked by providing a public method isValid() that compares the total of a new prospective amount plus all existing Bet s to the table limit. This can be used by the Player to evaluate each potential bet prior to creating it.
In the unlikely event of the Player object creating an illegal Bet, we can also throw (or raise) an exception to indicate that we have a design error that was not detected via unit testing. This should be a subclass of Exception that has enough information to debug the problem with the Player that attempted to place the illegal bet.
Additionally, the game can check the overall state of a Player‘s Bets to be sure that the table minimum is met. We’ll need to provide a public method isValid() that is used by the game. In the event of the minimum not being met, there are serious design issues, and an exception should be thrown. Generally, this situation arises because of a bug where the Player should have declined to bet rather than placing incorrect bets that don’t meet the table minimum.
Bet Resolution. An important consideration is the collaboration between Table and some potential game class for resolving bets.
The Table has the collection of Bets, each of which has a specific Outcome.
The Wheel selects a Bin, which has a collection of Outcomes. All bets with a winning outcome will be resolved as a winner.
So we’ll have multiple Outcomes in the winning Bin to be matched against multiple Bets active on the Table.
Because some games are stateful, and the winning and losing bets depend on game state, we will defer the details of this collaboration design until we get to the Game class. For now, we’ll simply collect the Bets.
Adding and Removing Bets. A Table contains Bets. Instances of Bet are added by a Player . Later, Bets will be removed from the Table by the Game. When a bet is resolved, it must be deleted. Some games, like Roulette resolve all bets with each spin. Other games, like Craps, involve multiple rounds of placing and resolving some bets, and leaving other bets in play.
For Bet deletion to work, we have to provide a method to remove a bet. When we look at Game and bet resolution we’ll return to bet deletion. It’s import not to over-design this class at this time; we will often add features as we develop designs for additional use cases.
InvalidBet is raised when the Player attempts to place a bet which exceeds the table’s limit.
This class simply inherits all features of its superclass.
Table contains all the Bet s created by the Player. A table also has a betting limit, and the sum of all of a player’s bets must be less than or equal to this limit. We assume a single Player in the simulation.
This is the table limit. The sum of a Player ‘s bets must be less than or equal to this limit.
Creates an empty list of bets.
Validates this bet. If the sum of all bets is less than or equal to the table limit, then the bet is valid, return true. Otherwise, return false.
Adds this bet to the list of working bets. If the sum of all bets is greater than the table limit, then an exception should be thrown (Java) or raised (Python). This is a rare circumstance, and indicates a bug in the Player more than anything else.
Returns an iterator over the available list of Bet instances. This simply returns the iterator over the list of Bet objects.
Note that we need to be able remove Bets from the table. Consequently, we have to update the list, which requires that we create a copy of the list. This is done with bets[:].
Return String representation of all current bets.
There are three deliverables for this exercise. Each of these will have complete Javadoc comments or Python docstring comments.
An InvalidBet exception class. This is a simple subclass of Exception.
Since there’s no unique programming here, there’s no compelling need to construct a unit test.
The Table class.
A class which performs a unit test of the Table class. The unit test should create at least two instances of Bet, and establish that these Bet s are managed by the table correctly.
Between Player and Game, we have a chicken-and-egg design problem. In this chapter, we’ll describe the design for Game in detail. However, in order to create the deliverables, we have to create a version of Player that we can use just to get started. In the long run, we’ll need to create a sophisticated hierarchy of players. Rather than digress too far, we’ll create a simple player, Pssenger57 (they always bet on black), which will be the basis for further design in later chapters.
The RouletteGame‘s responsibility is to cycle through the various steps of the game procedure, getting bets from the player, spinning the wheel and resolving the bets. This is an active class that makes use of the classes we have built so far. The hallmark of an active class is longer or more complex methods. This is distinct from most of the classes we have considered so far, which have relatively trivial methods that are little more than getters and setters of instance variables.
The sequence of operations in one round of the game is the following.
A Single Round of Roulette
Place Bets. Notify the Player to create Bet s. The real work of placing bets is delegated to the Player class. Note that the money is committed at this point; they player’s stake should be reduced as part of creating a Bet.
Spin Wheel. Get the next spin of the Wheel, giving the winning Bin, w. This is a collection of individual Outcome‘s which will be winners.
Resolve All Bets.
For each Bet, b placed by the Player:
Matching Algorithm. This Game class will have the responsibility for matching the collection of Outcomes in the Bin of the Wheel with the collection of Outcomes of the Bets on the Table. We have two collections that must be matched: Bin and Table. We’ll need to structure a loop or nested loops to compare individual elements from these two collections.
Driven by Bin. We could use a loop to visit each Outcome in the winning Bin.
For each Outcome, we would then visit each of the Bets contained by the Table. A Bet‘s Outcome that matches the Bin‘s Outcome is a winner and is paid off. The other bets are losers. This involves two nested loops: one to visit the winning Outcomes of a Bin and one to visit the Bet s of a Table.
Driven by Table. The alternative is to visit each Bet contained by the Table.
Since the winning Bin is has a Set of Outcomes, we can exploit set membership methods to test for presence or absence of an Bet‘s Outcome in the winning Bin‘s Set. If the Bin contains the Outcome, the Bet is a winner; otherwise the Bet is a loser. This only requires a single loop to visit the Bet s of a Table.
Player Interface. The Game collaborates with Player. We have a “chicken and egg” problem in decomposing the relationship between these classes. We note that the Player is really a complete hierarchy of subclasses, each of which provides a different betting strategy. For the purposes of making the Game work, we can develop our unit tests with a stub for Player that simply places a single kind of Bet. We’ll call this player “Passenger57” because it always bets on Black. In several future exercises, we’ll revisit this design to make more sophisticated players.
For some additional design considerations, see Additional Roulette Design Considerations. This provides some more advanced game options that our current design can be made to support. We’ll leave this as an exercise for the more advanced student.
Passenger57 constructs a Bet based on the Outcome named "Black". This is a very persistent player.
We’ll need a source for the Black outcome. We have several choices; we looked at these in Roulette Bet Class. We will query the Wheel for the needed Outcome object.
In the long run, we’ll have to define a Player superclass, and make Passenger57 class a proper subclass of Player. However, our focus now is on getting the Game designed and built.
Constructs the Player with a specific table for placing bets. This also creates the “black” Outcome. This is saved in a variable named Passenger57.black for use in creating bets.
Game manages the sequence of actions that defines the game of Roulette. This includes notifying the Player to place bets, spinning the Wheel and resolving the Bets actually present on the Table.
We based the Roulette Game constructor on a design that allows any of the fields to be replaced. This is the Strategy design pattern. Each of these collaborating objects is a replaceable strategy, and can be changed by the client that uses this game.
Additionally, we specifically do not include the Player instance in the constructor. The Game exists independently of any particular Player, and we defer binding the Player and Game until we are gathering statistical samples.
This will execute a single cycle of play with a given Player. It will call thePlayer‘s placeBets() method to get bets. It will call theWheel‘s next() method to get the next winning Bin.
It will then call theTable‘s iterator to get an Iterator over the Bets. Stepping through this Iterator returns the individual Bet objects. If the winning Bin contains the Outcome, call the thePlayer win() method otherwise call the thePlayer lose() method.
Why are Table and Wheel part of the constructor while Player is given as part of the cycle() method?
We are making a subtle distinction between the casino table game (a Roulette table, wheel, plus casino staff to support it) and having a player step up to the table and play the game. The game exists without any particular player. By setting up our classes to parallel the physical entities, we give ourselves the flexibility to have multiple players without a significant rewrite. We allow ourselves to support multiple concurrent players or multiple simulations each using a different player object.
Also, as we look forward to the structure of the future simulation, we note that the game objects are largely fixed, but there will be a parade of variations on the player. We would like a main program that simplifies inserting a new player subclass with minimal disruption.
Why do we have to include the odds with the Outcome ? This pairing makes it difficult to create an Outcome from scratch.
The odds are an essential ingredient in the Outcome . It turns out that we want a short-hand name for each Outcome. We have three ways to provide a short name.
- A variable name. Since each variable is owned by a specific class instance, we need to allocate this to some class. The Wheel or the BinBuilder make the most sense for owning this variable.
- A key in a mapping. In this case, we need to allocate the mapping to some class. Again, the Wheel or BinBuilder make the most sense for owning the mapping.
- A method which returns the Outcome . The method can use a fixed variable or can get a value from a mapping.
There are three deliverables for this exercise. The stub does not need documentation, but the other classes do need complete Javadoc or Python docstrings.
In European casinos, the wheel has a single zero. In some casinos, the zero outcome has a special en prison rule: all losing bets are split and only half the money is lost, the other half is a push and is returned to the player. The following design notes discuss the implementation of this additional rule.
This is a payout variation that depends on a single Outcome. We will need an additional subclass of Outcome that has a more sophisticated losing amount method: it would push half of the amount back to the Player‘s stake. We’ll call this subclass the the PrisonOutcome class.
In this case, we have a kind of hybrid resolution: it is a partial loss of the bet. In order to handle this, we’ll need to have a loss() method in Bet as well as a win() method. Generally, the loss() method does nothing (since the money was removed from the Player‘s stake when the bet was created.) However, for the PrisonOutcome class, the loss() method returns half the money to the Player.
We can also introduce a subclass of BinBuilder that creates only the single zero, and uses this new PrisonOutcome subclass of Outcome for that single zero. We can call this the EuroBinBuilder . The EuroBinBuilder does not create the five-way Outcome of 00-0-1-2-3, either; it creates a four-way for 0-1-2-3.
After introducing these two subclasses, we would then adjust Game to invoke the loss() method of each losing Bet, in case it resulted in a push. For an American-style casino, the loss() method does nothing. For a European-style casino, the los() method for an ordinary Outcome also does nothing, but the los() for a PrisonOutcome would implement the additional rule pushing half the bet back to the Player . The special behavior for zero then emerges from the collaboration between the various classes.
We haven’t designed the Player yet, but we would have to bear this push rule in mind when designing the player.
The uniform interface between Outcome and PrisonOutcome is a design pattern called polymorphism. We will return to this principle many times.
This chapter presents some design rework and implementation rework for testability purposes. While testability is very important, new programmers can be slowed to a crawl by the mechanics of building test drivers and test cases. We prefer to emphasize the basic design considerations first, and address testability as a feature to be added to a working class.
Additionally, we’ll address some issues in construction of class instances and an idealized structure for the main procedure.
Without pausing, we charged past the elephant standing in the saloon. It’s time to pause a moment a take a quick glance back at the pachyderm we ignored.
Back in Wheel Class we skipped over the problem of testing an application that includes a random number generator (RNG). There are two questions raised:
To address the testing issue, we need to develop some scaffolding that permits controlled testing. There are three approaches to replacing the random behavior with something more controlled.
One approach is to create a subclass of Wheel to create a more testable version without the random number generator. This MockWheel call be used to test classes that require a specific sequence of outcomes.
A second approach is to record the sequence of random numbers actually generated from a particular seed value and use this to define the exected test results.
Instead of changing Wheel or analyzing the results of a random number generator, we can define a subclass of java.util.Random (or Python’s random.Random) that isn’t actually random. Without much analysis, we suggest this in Wheel Class.
This is called the Mock Objects approach. We created a Mock Random Number Generator.
On Random Numbers
Random numbers aren’t actually “random”. Since they are generated by an algorithm, they are sometimes called pseudo-random. The distinction is important because pseudo-random numbers are generated in a fixed sequence from a given seed value. Computing the next value in the sequence involves a simple calculation that is expected to overflow the available number of bits of precision leaving apparently random bits as the next value. This leads to results which, while predictable, are arbitrary enough that they pass rigorous statistical tests and are indistinguishable from data created by random processes.
We can make an application less predictable by choosing a very hard to predict seed value. One popular choice for the seed is the system clock. In some operating systems a special device is available for producing random seed values. In Linux this is typically /dev/random.
As a consequence, we can make an application more predictable by setting a fixed seed value and noting the sequence of numbers generated. We can write a short demonstration program to see the effect of setting a fixed seed. This will also give us a set of predictable answers for unit testing.
Good testability is achieved when there are no changes to the target software. For this reason, we don’t want to have two versions of Wheel.
Instead of having two versions of Wheel, it’s slightly better to have a random number generator that creates a known sequence with which we can test. To get this known sequence, we have a choice between creating a non-random subclass of java.util.Random or controlling the seed for the random number generator used by Wheel. Both will produce a known sequence of non-random values.
An important consequence of these design decisions is that we have to make the random number generator in Wheel visible. This creates a tension between the encapsulation principle and the testability principle.
By Encapsulation we mean the design strategy where we define a class to encapsulate the details of it’s implementation. It’s unclear if the random number generator is an implementation detail or an explicit part of the wheel.
Generally, for must of the normal use cases, the Wheel‘s random number generator is an invisible implementation detail. However, for testing purposes, the random number generator needs to be a configurable feature of the Wheel instance.
Our favorite approach to making something more visible is to provide default values in the constructor for the object.
Note
Python Subclass Design
Because of the late binding in Python, and the lack of compile-time type checking, we don’t have to use strict subclass inheritance to replace the Python random number generator with our own non-random number generator. We only have to provide a class with the minimal interface that our application requires.
While legal, we prefer not to bypass the inheritance tree in Python. We find that applications are much easier to maintain if reasonable care is taken to assure that the classes and interfaces are matched up as precisely as possible. In this case, we’ll want to make our non-random generator a strict subclass of the Random class.
Note that the Mock Objects approach follows the principle of deferred binding or dependency injection. A class doesn’t choose which implementation it will use; the decision is made somewhere else in the application. Ideally, by the user.
We’ve allowed the following options.
We’ll need to build and execute a program that reveals the fixed sequence of spins that are created by the non-random number generator.
Create an instance of NonRandom or Random. Set the seed of the this random number generator to a fixed value, for example, 3.
Create an instance of Wheel using this non-random number generator.
Call the Wheel.next() method six times, and print the winning Bin instances. This sequence will always be the result for a seed value of 3.
This discovery procedure will give you the results needed to create unit tests for Wheel and anything that uses it, for example, Game.
Why are we making the random number generator more visible? Isn’t object design about encapsulation?
Encapsulation isn’t the same thing as “information hiding” . For some people, the information hiding concept can be a useful way to begin to learn about encapsulation. However, information hiding is misleading because it is often taken to exremes. In this case, we want to encapsulate the bins of the wheel and the procedure for selecting the winning bin into a single object. However, the exact random-number generator (RNG) is a separate component, allowing us to bind any suitable RNG.
Consider the situation where we are generating random numbers for a cryptographic application. In this case, the built-in random number generator may not be random enough. In this case, we may have a third-party Super-Random-Generator that should replace the built-in generator. We would prefer to minimize the changes required to introduce this new class.
Our initial design has isolated the changes to the Wheel, but required us to change the constructor. Since we are changing the source code for a class, we must to unit test that change. Further, we are also obligated unit test all of the classes that depend on this class. Changing the source for a class deep within the application forces us to endure the consequence of retesting every class that depends on this deeply buried class. This is too much work to simply replace one object with another.
We do, however, have an alternative. We can change the top-level main() method, altering the concrete object instances that compose the working application. By making the change at the top of the application, we don’t need to change a deeply buried class and unit test all the classes that depend on the changed class. Instead, we are simply choosing among objects with the same superclass or interface.
This is why we feel that constructors should be made very visible using the various design patterns for Factories and Builders. Further, we look at the main method as a kind of master Builder that assembles the objects that comprise the current execution of our application.
See our Roulette Solution Questions and Answers FAQ for more on this subject.
Looking ahead, we will have additional notes on this topic as we add the SevenReds Player Class subclass of Player.
If setting the seed works so well, why make a non-random subclass?
While setting the seed is an excellent method for setting up a unit test, not everyone is comfortable with random number generators. The presence of an arbitrary but predictable sequence of values looks too much like luck for some Quality Assurance (QA) managers. While the algorithms for both Python and Java random number generators are published and well-understood, this isn’t always sufficiently clear and convincing for non-mathematicians. It’s often seems simpler to build a non-random subclass than to control the existing class.
From another point of view, creating a subclass of a built-in class is a necessary skill. The random number generators are easy classes to extend. Extending the abstract collection classes is also a very useful skill, but somewhat more complex than extending the random number generator.
We’ll present the design modification for Wheel first. This will be followed by design information for NonRandom in both Java and Python.
Wheel contains the 38 individual bins on a Roulette wheel, plus a random number generator. It can select a Bin at random, simulating a spin of the Roulette wheel.
Note that we will be rewriting some methods to change their implementation. The external definitions of the methods don’t change, but the implementations can (and do) change. This is the real strength of OO design. Once we have a well-defined interface (defined by the public methods and attributes), we are free to change the implementation as necessary.
This kind of rework – making a fundamental change to the implementation without touching the interface – is essential to successful OO programming.
Create a wheel with the given random number generator. This will define the various bins and outcomes using an instance of BinBuilder.
Note
Common n00b Mistake
Note that you cannot provide an instance of random.Random as the default argument. A random.Random is a mutable object, and using a mutable object as a default value of a function will lead to weird problems because that single object instance will be reused for every Wheel built during testing and actual simulation runs.
There are three deliverables for this exercise. All of these deliverables need appropriate Javadoc comments or Python docstrings.
The variations on Player, all of which reflect different betting strategies, is the heart of this application. In Roulette Game Class, we roughed out a stub class for Player. In this chapter, we will complete that design. We will also expand on it to implement the Matingale betting strategy.
We have now built enough infrastructure that we can begin to add a variety of players and see how their betting strategies work. Each player is betting algorithm that we will evaluate by looking at the player’s stake to see how much they win, and how long they play before they run out of time or go broke.
The Player has the responsibility to create bets and manage the amount of their stake. To create bets, the player must create legal bets from known Outcomes and stay within table limits. To manage their stake, the player must deduct money when creating a bet, accept winnings or pushes, report on the current value of the stake, and leave the table when they are out of money.
We have an interface that was roughed out as part of the design of Game and Table. In designing Game, we put a placeBets() method in Player to place all bets. We expected the Player to create Bet s and use the placeBet() method of Table class to save all of the individual Bets.
In an earlier exercise, we built a stub version of Player in order to test Game. See Passenger57 Design. When we finish creating the final superclass, Player, we will also revise our Passenger57 to be a subclass of Player, and rerun our unit tests to be sure that our more complete design still handles the basic test cases correctly.
Objectives. Our objective is to have a new abstract class, Player, with two new concrete subclasses: a revision to Passenger57 and a new player that follows the Martingale betting system.
We’ll defer some of the design required to collect detailed measurements for statistical analysis. In this first release, we’ll simply place bets.
There are four design issues tied up in Player : tracking stake, keeping within table limits, leaving the table, and creating bets. We’ll tackle them in separate subsections.
Tracking the Stake. One of the more important features we need to add to Player are the methods to track the player’s stake. The initial value of the stake is the player’s budget. There are two significant changes to the stake.
We’ll have to design an interface that will create Bet s, reducing the stake. and will be used by Game to notify the Player of the amount won.
Additionally, we will need a method to reset the stake to the starting amount. This will be used as part of data collection for the overall simulation.`
Table Limits. Once we have our superclass, we can then define the Martingale player as a subclass. This player doubles their bet on every loss, and resets their bet to a base amount on every win. In the event of a long sequence of losses, this player will have their bets rejected as over the table limit. This raises the question of how the table limit is represented and how conformance with the table limit is assured. We put a preliminary design in place in Roulette Table Class. There are several places where we could isolate this responsibility.
We recommend the second choice: adding a isValid() method to the Table class. This has the consequence of allocating responsibility to Table , and permits us to have more advanced games where some bets are not allowed during some game states. It also obligates Player to validate each bet with the Table. It also means that at some point, the player may be unable to place a legal bet.
We could also implement this by adding to the responsibilities of the existing placeBet() method. For example, we could return true if the bet was accepted, and false if the bet violated the limits or other game state rules. We prefer to isolate responsibility and create a second method rather than pile too much into a single method.
Leaving the Table. In enumerating the consequences of checking for legal bets, we also uncovered the issue of the Player leaving the game. We can identify a number of possible reasons for leaving: out of money, out of time, won enough, and unwilling to place a legal bet. Since this decision is private to the Player , we need a way of alerting the Game that the Player is finished placing bets.
There are three mechanisms for alerting the Game that the Player is finished placing bets.
We recommend adding a method to Player to indicate when Player is done playing. This gives the most flexibility, and it permits Game to cycle until the player withdraws from the game.
A consequence of this decision is to rework the Game class to allow the player to exit. This is relatively small change to interrogate the Player before asking the player to place bets.
Note
Design Evolution
In this case, these were situations which we didn’t discover during the initial design. It helped to have some experience with the classes in order to determine the proper allocation of responsibilities. While design walkthroughs are helpful, an alternative is a “prototype”, a piece of software that is incomplete and can be disposed of. The earlier exercise created a version of Game that was incomplete, and a version of PlayerStub that will have to be disposed of.
Creating Bets from Outcomes. Generally, a Player will have a few Outcomes on which they are betting. Many systems are similar to the Martingale system, and place bets on only one of the Outcomes. These Outcome objects are usually created during player initialization. From these Outcome s, the Player can create the individual Bet instances based on their betting strategy.
We’ll design the base class of Player and a specific subclass, Martingale. This will give us a working player that we can test with.
Player places bets in Roulette. This an abstract class, with no actual body for the placeBets() method. However, this class does implement the basic win() method used by all subclasses.
The player’s current stake. Initialized to the player’s starting budget.
The number of rounds left to play. Initialized by the overall simulation control to the maximum number of rounds to play. In Roulette, this is spins. In Craps, this is the number of throws of the dice, which may be a large number of quick games or a small number of long-running games. In Craps, this is the number of cards played, which may be large number of hands or small number of multi-card hands.
Returns true while the player is still active.
Updates the Table with the various Bet s.
When designing the Table, we decided that we needed to deduct the amount of a bet from the stake when the bet is created. See the Table Roulette Table Overview for more information.
Martingale is a Player who places bets in Roulette. This player doubles their bet on every loss and resets their bet to a base amount on each win.
The number of losses. This is the number of times to double the bet.
The the bet multiplier, based on the number of losses. This starts at 1, and is reset to 1 on each win. It is doubled in each loss. This is always equal to
.
Uses the superclass win() method to update the stake with an amount won. This method then resets lossCount to zero, and resets betMultiple to 1.
Uses the superclass lose() to do whatever bookkeeping the superclass already does. Increments lossCount by 1 and doubles betMultiple.
There are six deliverables for this exercise. The new classes must have Javadoc comments or Python docstrings.
This section starts to address the overall “main program” that pulls the various classes together to create a finished application. Additionally, we’ll also address some issues in how Java handles collections of primitive data types like integers.
We can now use our application to generate some more usable results. We can perform a number of simulation runs and evaluate the long-term prospects for the Martingale betting system. We want to know a few things about the game:
The Simulator will be an active class with a number of responsibilities
At this point, we’ll need for formalize some definitions, just to be crystal clear on the responisbility allocation.
cycle
A single cycle of betting and bet resolution. This depends on a single random event: a spin of the wheel or a throw of the dice. Also known as a round of play.
session
One or more cycles. The session begins with a player having their full stake. A session ends when the play elects to leave or can no longer participate. A player may elect to leave because of elapsed time (typically 250 cycles), or they have won a statistically significant amount. A player can no longer participate when their stake is too small to make the minimum bet for the table.
game
Some games have intermediate groupings of events between an individual cycles and an entire session. Blackjack has hands where a number of player decisions and a number of random events contribute to the payoff. Craps has a game, which starts with the dice roll when the point is off, and ends when the point is made or the shooter gets Craps; consequently, any number of individual dice rolls can make up a game. Some bets are placed on the overall game, while others are placed on individual dice rolls.
The sequence of operations for the simulator looks like this.
Controlling the Simulation
Empty List of Maxima. Create an empty maxima list. This is the maximum stake at the end of each session.
Empty List of Durations. Create an empty durations list. This is the duration of each session, measured in the number of cycles of play before the player withdrew or ran out of money.
For All Sessions. For each of 100 sessions:
Empty List of Stake Details. Create an empty list to hold the history of stake values for this session. This is raw data that we will summarize into two metrics for the session: maximum stake and duration. We could also have two simple variables to record the maximum stake and count the number of spins for the duratioon. However, the list allows us to gather other statistics, like maximum win or maximum loss.
While The Player Is Active.
Play One Cycle. Play one cycle of the game. See the definition in Roulette Game Class.
Save Outcomes. Save the player’s current stake in the list of stake values for this session. An alternative is to update the maximum to be the larger of the current stake and the maximum, and increment the duration.
Get Maximum. Get the maximum stake from the list of stake values. Save the maximum stake metric in the maxima list.
Get Duration. Get the length of the list of stake values. Save the duration metric in the durations list. Durations less than the maximum mean the strategy went bust.
Statistical Description of Maxima. Compute the average and standard deviation of the values in the maxima list.
Statistical Description of Durations. Compute the average and standard deviation of values in the durations list.
Both this overall Simulator and the Game collaborate with the Player. The Simulator‘s collaboration, however, initalizes the Player and then monitors the changes to the Player‘s stake. We have to design two interfaces for this collaboration.
Player Initialization. The Simulator will initialize a Player for 250 cycles of play, assuming about one cycle each minute, and about four hours of patience. We will also initialize the player with a generous budget of the table limit, 100 betting units. For a $10 table, this is $1,000 bankroll.
Currently, the Player class is designed to play one session and stop when their duration is reached or their stake is reduced to zero. We have two alternatives for reinitializing the Player at the beginning of each session.
While the first solution is quite simple, there are some advantages to creating a PlayerFactory. If we create an Abstract Factory, we have a single place that creates all Players.
Further, when we add new player subclasses, we introduce these new subclasses by creating a new subclass of the factory. In this case, however, only the main program creates instances of Player, reducing the value of the factory. While design of a Factory is a good exercise, we can scrape by with adding setter methods to the Player class.
Player Interrogation. The Simulator will interrogate the Player after each cycle and capture the current stake. An easy way to manage this detailed data is to create a List that contains the stake at the end of each cycle. The length of this list and the maximum value in this list are the two metrics the Simulator gathers for each session.
Our list of maxima and durations are created sequentially during the session and summarized sequentially at the end of the session. A Java LinkedList will do everything we need. For a deeper discussion on the alternatives available in the collections framework, see Design Decision – Choosing A Collection.
Statistical Summary. The Simulator will interrogate the Player after each cycle and capture the current stake. We don’t want the sequence of stakes for each cycle, however, we want a summary of all the cycles in the session. We can save the length of the sequence as well as the maximum of the sequence to determine these two aggregate performance parameters for each session. Our objective is to run several session simulations to get averages and a standard deviations for duration and maximum stake. This means that the Simulator needs to retain these statistical samples. We will defer the detailed design of the statistical processing, and simply keep the duration and maximum values in Lists for this first round of design.
Simulator exercises the Roulette simulation with a given Player placing bets. It reports raw statistics on a number of sessions of play.
Handling Lists of Values in Java
Java programmers can’t easily accumulate a List of int values. This is because a primitive int value is not an object. The usual solution is to make an Integer value from the int, and put the Integer object into the list.
When getting values back out of the list, there is a two-step dance: cast the item in the list to be an Integer, then get the int value of that object. The following examples show this as two steps.
for( Iterator<Integer> i = someList.iterator(); i.hasNext(); ) {
int value = i.next().intValue();
... processing of value ...
}
The duration value to use when initializing a Player for a session. A default value of 250 is a good choice here.
The stake value to use when initializing a Player for a session. This is a count of the number of bets placed; i.e., 100 $10 bets is $1000 stake. A default value of 100 is sensible.
The number of game cycles to simulate. A default value of 50 makes sense.
A List of lengths of time the Player remained in the game. Each session of play producrs a duration metric, which are collected into this list.
A List of maximum stakes for each Player. Each session of play producrs a maximum stake metric, which are collected into this list.
The Player; essentially, the betting strategy we are simulating.
Executes a single game session. The Player is initialized with their initial stake and initial cycles to go. An empty List of stake values is created. The session loop executes until the Player playing() returns false. This loop executes the Game cycle(); then it gets the stake from the Player and appends this amount to the List of stake values. The List of individual stake values is returned as the result of the session of play.
Executes the number of games sessions in samples. Each game session returns a List of stake values. When the session is over (either the play reached their time limit or their stake was spent), then the length of the session List and the maximum value in the session List are the resulting duration and maximum metrics. These two metrics are appended to the durations list and the maxima list.
A client class will either display the durations and maxima raw metrics or produce statistical summaries.
The current design for the Player doesn’t provide all the methods we need.
We’ll can add two new methods: one will set the stake and the other will set the roundsToGo.
There are five deliverables for this exercise. Each of these classes needs complete Javadoc or Python docstring comments.
For this initial demonstration program, it should simply print the list of maxima, and the list of session lengths. This raw data can be redirected to a file, loaded into a spreadsheet and analyzed.
This section introduces an additional specialization of the Martingale strategy. Additionally, we’ll also address some issues in how an overall application is composed of individual class instances. Adding this new subclass should be a small change to the main application class.
The SevenReds player waits for seven red wins in a row before betting black. This is a subclass of Player. We can create a subclass of our main Simulator to use this new SevenReds class.
We note that Passenger57‘s betting is stateless: this class places the same bets over and over until they are cleaned out or their playing session ends.
The Martingale player’s betting, however, is stateful. This player changes the bet based on wins and losses. The state is a loss counter than resets to zero on each win, and increments on each loss.
Our SevenReds player will have two states: waiting and betting. In the waiting state, they are simply counting the number of reds. In the betting state, they have seen seven reds and are now playing the Martingale system on black. We will defer serious analysis of this stateful betting until some of the more sophisticated subclasses of Player. For now, we will simply use an integer to count the number of reds.
Game Changes. Currently, a Player is not informed of the final outcome unless they place a bet. We designed the Game to evaluate the Bet instances and notify the Player of just their Bets that were wins or losses. We will need to add a method to Player to be given the overall list of winning Outcomes even when the Player has not placed a bet.
Once we have updated the design of Game to notify Player, we can add the new SevenReds class. Note that we are can intoduce each new betting strategy via creation of new subclasses. A relatively straightforward update to our simulation main program allows us to use these new subclasses. The previously working subclasses are left in place, allowing graceful evolution by adding features with minimal rework of existing classes.
In addition to waiting for the wheel to spin seven reds, we will also follow the Martingale betting system to track our wins and losses, assuring that a single win will recoup all of our losses. This makes SevenReds a further specialization of Martingale. We will be using the basic features of Martingale, but doing additional processing to determine if we should place a bet or not.
Introducing a new subclass should be done by upgrading the main program. See Soapbox on Composition for comments on the ideal structure for a main program. Additionally, see the Roulette Solution Questions and Answers FAQ entry.
Soapbox on Composition
Generally, a solution is composed of a number of objects. However, the consequences of this are often misunderstood. Since the solution is a composition of objects, it falls on the main method to do just the composition and nothing more.
Our ideal main program creates and composes the working set of objects. In this case, it should decode the command-line parameters, and use this information to create and initialize the simulation objects, then start the processing. For these simple exercises, however, we’re omitting the parsing of command-line parameters, and simply creating the necessary objects directly.
Our main program should, therefore, look something like the following:
theRNG= random.Random()
theWheel= Wheel( theRNG )
theTable= Table()
theGame= Game( theWheel, theTable )
thePlayer= SevenReds( table )
sim= new Simulator( theGame, thePlayer )
sim.gather()
- The theRNG variable can also be initialized to an instance of NonRandom. The idea is that we build up the functionality of Wheel by composition. We compose the wheel of the bins plus the number generator.
- the thePlayer variable can also be Martingale or Passenger57. Again, we have assembled the final simulation by composition of a Wheel (and its generator), the Table and the specific Player algorithm.
- This is the actual work of the application, done by the Simulator, using the Game and Player objects built by main.
In many instances, the construction of objects is not done directly by the main method. Instead, the main method will construct a base group of Abstract Factory and Builder objects. Given these objects and the command-line parameters, the application objects can be built. The application objects then collaborate to perform the required functions.
SevenReds is a Martingale player who places bets in Roulette. This player waits until the wheel has spun red seven times in a row before betting black.
The number of reds yet to go. This starts at 7 , is reset to 7 on each non-red outcome, and decrements by 1 on each red outcome.
Note that this class inherits betMultiple. This is initially 1, doubles with each loss and is reset to one on each win.
If redCount is zero, this places a bet on black, using the bet multiplier.
This is notification from the Game of all the winning outcomes. If this vector includes red, redCount is decremented. Otherwise, redCount is reset to 7.
We’ll need to revise the Player class to add the following method. The superclass version doesn’t do anything with this information. Some subclasses, however, will process this.
The game will notify a player of each spin using this method. This will be invoked even if the player places no bets.
We’ll need to revise the Game class to extend the cycle method. This method must provide the winning bin’s Outcome set.
There are six deliverables from this exercise. The new classes will require complete Javadoc comments or Python docstrings.
For this initial demonstration program, it should simply print the list of maxima, and the list of session lengths. This raw data can be redirected to a file, loaded into a spreadsheet and analyzed.
This section presents two ordinary statistical algorithms: mean and standard deviation. In one sense, this section could be treated as optional. Instead of having the simulator present useful summary statistics, raw data can be put into a spreadsheet for creating the statistics.
However, the process of designing these statistical processing classes is very interesting. This chapter examines some ways to add features to the built-in collection classes.
Currently, the Simulator class collects two Lists. One has the length of a session, the other has the maximum stake during a session. We need to create some descriptive statistics to summarize these stakes and session lengths.
On Statistics
In principle, we could apply basic probability theory to predict the statistics generated by this simulation. Indeed, some of the statistics we are gathering are almost matters of definition, rather than actual unknown data. We are, however, much more interested in the development of the software than we are in applying probability theory to a relatively simple casino game. As a consequence, the statistical analysis here is a little off-base.
In spite of our problems, we will build a relatively simple-minded set of descriptive statistics. We will average two metrics: the peak stake for a session and the duration of the session. Both of these values have some statistical problems. The peak stake, for instance, is already a summary number. We have to be cautious in our use of summarized numbers, since we have lost any sense of the frequency with which the peaks occured. For example, a player may last 250 cycles of play, with a peak stake of 130. We don’t know if that peak occurred once or 100 times out of that 250. Additionally, the length of the session has an upper bound on the number of cycles. This forces the distribution of values to be skewed away from the predictable distribution.
We will design a Statistics class with responsibility to retain and summarize a list of numbers and produce the average (also known as the mean) and standard deviation. The Simulator can then use this this Statistics class to get an average of the maximum stakes from the list of session-level measures. The Simulator can also apply this Statistics class to the list of session durations to see an average length of game play before going broke.
We can encapsulate this statistical processing in two ways: we could extend an existing class or we could delegate the statistical functions to a separate class. If we extend the library java.util.List, we can add the needed statistical summary features; given this new class, we can replace the original List of sample values with a StatisticalList that both saves the values and computes descriptive statistics. In addition to delegation, we have two choices for implementation of this extended version of List, giving us three alternative designs.
Alternative three – a separate statistical class – has the most reuse potential. We’ll create a simple class with two methods: mean() and stdev() to compute the mean and standard deviation of a List of Integer objects. This can be used in a variety of contexts, and allows us the freedom to switch List implementation classes without any other changes.
The detailed algorithms for mean and standard deviation are provided in Statistical Algorithms.
Since our processes are relative simple, stateless algorithms, we don’t need any instance variables. Consequently, we’ll never need to create an instance of this class. As with Java.lang.Math , all of these methods can be declared as static, making them features of the class itself.
For those programmers new to statistics, this section covers the Sigma operator, .
The operator has three parts to it. Below it is a bound variable, i, and the starting value for the range, written as
. Above it is the ending value for the range, usually something like n. To the right is some function to execute for each value of the bound variable. In this case, a generic function,
is shown. This is read as “sum f ( i ) for i in the range 0 to n”.
One common definition of uses a closed range, including the end values of 0 and n . However, since this is not a helpful definition for software, we will define
to use a half-open interval. It has exactly n elements, including 0 and n -1; mathematically,
.
Consequently, we prefer the following notation, but it is not often used. Since statistical and mathematical texts often used 1-based indexing, some care is required when translating formulae to programming languages that use 0-based indexing.
Our two statistical algorithms have a form more like the following function. In this we are applying some function, , to each value,
of an list,
.
When computing the mean, as a special case, there is no function applied to the values in the list. When computing standard deviation, the function involves subtracting and multiplying.
We can transform this definition directly into a for loop that sets the bound variable to all of the values in the range, and does some processing on each value of the List of Integers.
This is the Python implementation of Sigma. This computes two values, the sum, s and the number of elements, n.
When computing the standard deviation, we do something like the following
Where the f(x) calculuation computes the measure of deviation from the average.
Computing the mean of a list of values is relatively simple. The mean is the sum of the values divided by the number of values in the list. Since the statistical formula is so closely related to the actual loop, we’ll provide the formula, followed by an overview of the code.
The definition of the mathematical operator leads us to the following method for computing the mean:
Computing The Mean of a List, X, with n elements.
Initialize. Set .
Iterate. For each value, in the list:
Sum and Count. Set .
Result. Return .
The standard deviation can be done a few ways. We’ll use the formula shown below. This computes a deviation measurement as the square of the difference between each sample and the mean.
The sum of these measurements is then divided by the number of values times the number of degrees of freedom to get a standardized deviation measurement.
Again, the formula summarizes the loop, so we’ll show the formula followed by an overview of the code.
The definition of the mathematical operator leads us to the following method for computing the standard deviation:
Computing Standard Deviation of a List, X, with n elements.
Get the Mean. Compute the mean, m gets mean(x).
Initialize. Set .
Iterate. For each value, in the list:
Difference. Compute the difference from the mean, .
Sums. Compute the sum, .
This is typically done as d*d in Java, since there is no “squared” operator. In Python, this can be d**2.
Variance. Set . This
value reflects the statistical notion of “degrees of freedom”, which is beyond the scope of this book.
Result. Return the square root of the variance, .
Tip
Math Functions
For programmers new to Python, the math module contains the math.sqrt(), which computes square roots.
IntegerStatistics computes several simple descriptive statistics of Integer values in a List.
In Python, we don’t actually need a class definition, we can simply declare two functions outside any class. However, to be consistent with Java, it’s easier to define these functions in a class.
Since this class has entirely static methods, it doesn’t really need a constructor.
This requires the @staticmethod decorator.
Computes the mean of the List of Integer values.
This requires the @staticmethod decorator.
Computes the standard deviation of the List of Integer values.
There are three deliverables for this exercise. These classes will include the complete Javadoc comments or Python dostring.
Prepare some simple list (or tuple) of test data.
The results can be checked with a spreadsheet
Here is some standard deviation unit test data.
Here are some intermediate results and the correct answers given to 6 significant digits. Your answers should be the same to the precision shown.
This section will introduce a simple subclass of Player who bets at random.
One possible betting strategy is to bet completely randomly. This serves as an interesting benchmark for other betting strategies.
We’ll write a subclass of Player which steps through all of the bets available on the Wheel, selecting one or more of the available outcomes at random. This Player, like others, will have a fixed initial stake and a limited amount of time to play.
The Wheel class can provide an Iterator over the collection of Bin instances. We could revise Wheel to provide a binIterator() method that we can use to return all of the Bins. From each Bin, we will need an iterator we can use to return all of the Outcomes.
To collect a list of all possible Outcomes, we would use the following algorithm:
Locating all Outcomes
Empty List of Outcomes. Create an empty set of all Outcomes, all_OC.
Get Bin Iterator. Get the Iterator from the Wheel that lists all Bins.
For each Bin.
Get Outcome Iterator. Get the Iterator that lists all Outcomes.
For each Outcome.
Save Outcome. Save a reference to each Outcome in the set of all known outcomes, all_OC.
To place a random bet, we would use the following algorithm:
Placing a Random Bet
PlayerRandom is a Player who places bets in Roulette. This player makes random bets around the layout.
A Random Number Generator which will return the next random number.
This uses the super() construct to invoke the superclass constructor using the Table. Then it saves the random number generator. This could be an instance of either Random or NonRandom.
There are five deliverables from this exercise. The new classes need Javadoc comments or Python docstrings.
This section will describe a player who has a complex internal state. We will also digress on the way the states can be modeled using a group of polymorphic classes. This section also has an advanced exercise that shows some alternative implementations for the state objects, using the Singleton design pattern.
On the Internet, we found descriptions of a betting system called the “1-3-2-6” system. This system looks to recoup losses by waiting for four wins in a row. The sequence of numbers (1, 3, 2 and 6) are the multipliers to use when placing bets after winning. At each loss, the sequence resets to the multiplier of 1. At each win, the multiplier is advanced. After one win, the bet is now 3x. After a second win, the bet is reduced to 2x, and the winnings of 4x are “taken down” or removed from play. In the event of a third win, the bet is advanced to 6x. Should there be a fourth win, the player has doubled their money, and the sequence resets.
This betting system makes our player more stateful than in previous betting systems. When designing SevenReds, we noted that this player was stateful; that case, the state was a simple count.
In this case, the description of the betting system seems to identify four states: no wins, one win, two wins, and three wins. In each of these states, we have specific bets to place, and state transition rules that tell us what to do next. The following table summarizes the states, the bets and the transition rules.
When we are in a given state, the table gives us the amount to bet in the Bet column. If this bet wins, we transition to the state named in the On Win column, otherwise, we transition to the state named in the On Loss column. We always start in the No Wins state.
Design Pattern. We can exploit the State design pattern to implemente this more sophisticated player. This pattern suggests that we design a hierarchy of classes to represent these four states. Each state will have a slightly different bet amount, and different state transition rules. Each individual state class will be relatively simple, but we will have isolated the processing unique to each state into separate classes.
One of the consequences of the State design pattern is that it obligates us to define the interface between the Player and the object that holds the Player‘s current state.
It seems best to have the state object follow our table and provide three methods: currentBet(), nextWon(), and nextLost(). The Player can use these methods of the state object to place bets and pick a new state.
One very important note is that we never have to check the class of any object. This is so important, we will repeat it here.
Important
We don’t use isistance().
We use polymorphism and design all subclasses to have the same interface.
Python relies on duck typing (“if it walks like a duck and quacks like a duck, it is a duck”).
Additionally, Python relies on the principle that it’s better to seek forgiveness than ask permission.
What this translates to is an approach where an object’s methods are simply invoked. If the object implements the methods, then it walked like a duck and – for all practical purposes – actually was a duck. If the method is not implemented, the application has a serious design problem and needs to crash.
We find that isinstance() is sometimes used by beginning programmers who have failed to properly delegate processing to the subclass.
Often, when a responsibility has been left out of the class hierarchy, it is allocated to the client object. The typical Pretty-Poor Polymorphism looks like the following:
In all cases, uses of isinstance() must be examined critically.
This will usually lead to refactoring the special case out of the collaborating class. There will be three changes as part of the refactoring.
This refactoring leads to a class hierarchy that has the property of being polymorphic: all of the subclasses have the same interface: all objects of any class in the hierarchy are interchangable. Each object is, therefore, responsible for correct behavior. More important, a client object does not need to know which subclass the object is a member of: it simply invokes methods which are defined with a uniform interface across all subclasses.
Why code the state as objects?
The reason for encoding the states as objects is to encapsulate the information and the behavior associated with that state. In this case, we have both the bet amount and the rules for transition to next state. While simple, these are still unique to each state.
Since this is a book on design, we feel compelled to present the best design. In games like blackjack, the player’s state may have much more complex information or behavior. In those games, this design pattern will be very helpful. In this one case only, the design pattern appears to be over-engineered.
We will use this same design pattern to model the state changes in the Craps game itself. In the case of the Craps game, there is additional information as well as behavior changes. When the state changes, bets are won or lost, bets are working or not, and outcomes are allowed or prohibited.
Isn’t it simpler to code the state as a number? We can just increment when we win, and reset to zero when we lose.
The answer to all “isn’t it simpler” questions is “yes, but...” In this case, the full answer is “Yes, but what happens when you add a state or the states become more complex?”
This question arises frequently in OO programming. Variations on this question include “Why is this an entire object?” and “Isn’t an object over-engineering this primitive type?” See Design Decision – Object Identity FAQ entry on the Outcome class for additional background on object identity.
Our goal in OO design is to isolate responsibility. First, and most important, we can unambiguously isolate the responsibilities for each individual state. Second, we find that it is very common that only one state changes, or new states get added. Given these two conditions, the best object model is separate state objects.
Doesn’t this create a vast number of state objects?
Yes.
There are two usual follow-up questions: “Aren’t all those objects a lot of memory overhead?” or ”...a lot of processing overhead?”
Since Java and Python remove unused objects, the old state definitions are cleaned up by the garbage collection thread. A few tests will demonstrate that the Java memory management is efficient and reliable.
Object creation is an overhead that we can control. One common approach is to use the Singleton design pattern. In this case, this should be appropriate because we only want a single instance of each of these state classes.
Note that using the Singleton design pattern doesn’t change any interfaces except the initialization of the Player1326 object with the starting state.
Is Polymorphism necessary?
In some design patterns, like State and Command, it is essential that all subclasses have the same interface and be uniform, indistinguishable, almost anonymous instances. Because of this polymorphic property, the objects can be invoked in a completely uniform way.
In our exercise, we will design a number of different states for the player. Each state has the same interface. The actual values for the instance variables and the actual operation implemented by a subclass method will be unique. Since the interfaces are uniform, however, we can trust all state objects to behave properly.
There are numerous designs where polymorphism doesn’t matter at all. In many cases, the anonymous uniformity of subclasses isn’t relevant. When we move on to example other casino games, we will see many examples of non-polymorphic class hierarchies. This will be due to the profound differences between the various games and their level of interaction with the players.
Player1326State is the superclass for all of the states in the 1-3-2-6 betting system.
The Player1326 player who is currently in this state. This player will be used to provide the Outcome that will be used to create the Bet.
The constructor for this class saves the Player1326 which will be used to provide the Outcome on which we will bet.
Constructs a new Bet from the player’s preferred Outcome. Each subclass has a different multiplier used when creating this Bet.
In Python, this method should return NotImplemented. This is a big debugging aid, it helps us locate subclasses which did not provide a method body. This raise statement is the functional equivalent of the Java abstract declaration.
Constructs the new Player1326State instance to be used when the bet was a winner.
In Python, this method should return NotImplemented. This is a big debugging aid, it helps us locate subclasses which did not provide a method body. This raise statement is the functional equivalent of the Java abstract declaration.
Constructs the new Player1326State instance to be used when the bet was a loser. This method is the same for each subclass: it creates a new instance of Player1326NoWins.
This defined in the superclass to assure that it is available for each subclass.
Player1326NoWins defines the bet and state transition rules in the 1-3-2-6 betting system. When there are no wins, the base bet value of 1 is used.
Constructs a new Bet from the player’s outcome information. The bet multiplier is 1.
Constructs the new Player1326OneWin instance to be used when the bet was a winner.
Player1326OneWin defines the bet and state transition rules in the 1-3-2-6 betting system. When there is one wins, the base bet value of 3 is used.
Constructs a new Bet from the player’s outcome information. The bet multiplier is 3.
Constructs the new Player1326TwoWins instance to be used when the bet was a winner.
Player1326TwoWins defines the bet and state transition rules in the 1-3-2-6 betting system. When there are two wins, the base bet value of 2 is used.
Constructs a new Bet from the player’s outcome information. The bet multiplier is 2.
Constructs the new Player1326ThreeWins instance to be used when the bet was a winner.
Player1326ThreeWins defines the bet and state transition rules in the 1-3-2-6 betting system. When there are three wins, the base bet value of 6 is used.
Constructs a new Bet from the player’s outcome information. The bet multiplier is 6.
Constructs the new Player1326NoWins instance to be used when the bet was a winner.
An alternative is to update the player to indicate that the player is finished playing.
Player1326 follows the 1-3-2-6 betting system. The player has a preferred Outcome, an even money bet like red, black, even, odd, high or low. The player also has a current betting state that determines the current bet to place, and what next state applies when the bet has won or lost.
This is the player’s preferred Outcome. During construction, the Player must fetch this from the Wheel.
This is the current state of the 1-3-2-6 betting system. It will be an instance of a subclass of Player1326State. This will be one of the four states: No Wins, One Win, Two Wins or Three Wins.
Initializes the state and the outcome. The state is set to the initial state of an instance of Player1326NoWins.
The outcome is set to some even money proposition, for example "Black".
Updates the Table with a bet created by the current state. This method delegates the bet creation to state object’s currentBet() method.
Uses the superclass method to update the stake with an amount won. Uses the current state to determine what the next state will be by calling state‘s objects nextWon() method and saving the new state in state
Uses the current state to determine what the next state will be. This method delegates the next state decision to state object’s nextLost() method, saving the result in state.
There are eight deliverables for this exercise. Additionally, there is an optional, more advanced design exercise in a separate section.
Initially, each subclass of Player1326State has a unique currentBet() method.
This class can be simplified slightly to have the bet multiplier coded as an instance variable, betAmount. The currentBet() method can be refactored into the superclass to use the betAmount value.
This would simplify each subclass to be only a constructor that sets the betAmount multiplier to a value of 1, 3, 2 or 6.
Similarly, we could have the next state after winning defined as an instance variable, nextStateWin. We can initialized this during construction. Then the nextWon() method could also be refactored into the superclass, and would return the value of the nextStateWin instance variable.
The deliverable for this exercise is an alternative Player1326State class using just one class and distinct constructors that create each state object with an appropriate bet multipler and and next state win value.
The object creation for each state change can make this player rather slow.
There are a few design pattens that can reduce the number of objects that need to be created.
Global objects for the distinct state objects.
While truly global objects are usually a mistake, we can justify this by claiming that we’re only creating objects that are shared among a few objects.
The Singleton design pattern.
With some cleverness, this can be made transparent in Python. However, it’s easiest to make this explicit, by defining a formal instance() method that fetches (or creates) the one-and-only instance of the class.
A Factory object that produces state objects. This Factory can retain a small pool of object instances, eliminating needless object construction.
The deliverables for this exercise are revisions to the Player1326State class hierarchy to implement the Factory design pattern. This will not change any of the existing unit tests, demonstrations or application programs.
This is a map from a class name to an object instance.
Create a new mapping from the class name to object instance. There are only four objects, so this is relatively simple.
Return the Player1326State instance for the given class name.
This section will describe a player who has a complex internal state that can be modeled using existing library classes.
One method for tracking the lost bets is called the “cancellation” system or the “Labouchere” system. The player starts with a betting budget allocated as a series of numbers.
The usual example sequence is [ 1, 2, 3, 4, 5, 6 ].
Each bet will be the sum of the first and last numbers in the last.
In this example, the end values of 1+6 leads the player to bet 7.
When the player wins, the player cancels the two numbers used to make the bet. In the event that all the numbers are cancelled, the player has doubled their money, and can retire from the table happy.
For each loss, however, the player adds the amount of the bet to the end of the sequence; this is a loss to be recouped. This adds the loss to the amount bet to assure that the next winning bet both recoups the most recent loss and provides a gain. Multiple winning bets will recoup multiple losses, supplemented with small gains.
Example. Here’s an example of the cancellation system using [ 1, 2, 3, 4, 5, 6 ]
State. The player’s state is a list of individual bet amounts. This list grows and shrinks; when it is empty, the player leaves the table. We can keep a List of individual bet amounts. The total bet will be the first and last elements of this list. Wins will remove elements from the collection; losses will add elements to the collection. Since we will be accessing elements in an arbitrary order, we will want to use an ArrayList. We can define the player’s state with a simple list of values.
PlayerCancellation uses the cancellation betting system. This player allocates their available budget into a sequence of bets that have an accelerating potential gain as well as recouping any losses.
This List keeps the bet amounts; wins are removed from this list and losses are appended to this list. THe current bet is the first value plus the last value.
This is the player’s preferred Outcome.
This uses the PlayerCancellation.resetSequence() method to initalize the sequence of numbers used to establish the bet amount. This also picks a suitable even money Outcome, for example, black.
Puts the initial sequence of six Integer instances into the sequence variable. These Integers are built from the values 1 through 6.
Creates a bet from the sum of the first and last values of sequence and the preferred outcome.
Uses the superclass method to update the stake with an amount won. It then removes the fist and last element from sequence.
Uses the superclass method to update the stake with an amount lost. It then appends the sum of the first and list elements of sequence to the end of sequence as a new Integer value.
There are three deliverables for this exercise.
This section will describe a player who has an internal state that can be modeled using methods and simple values instead of state objects.
This is a variation on the Martingale System. See Martingale Player Design for more information.
A player could use the Fibonacci Sequence to structure a series of bets in a kind of cancellation system. The Fibonacci Sequence is
At each loss, the sum of the previous two bets is used, which is the next number in the sequence. In the event of a win, we revert to the basic bet.
Example. Here’s an example of the Fibonacci system.
State. In order to compute the Fibonacci sequence, we need to retain the two previous bets as the player’s state. In the event of a win, we revert to the basic bet value of 1.
In the event of a loss, we can update the two numbers to show the next step in the sequence. The player’s state is just these two numeric values.
PlayerFibonacci uses the Fibonacci betting system. This player allocates their available budget into a sequence of bets that have an accelerating potential gain.
This is the most recent bet amount. Initially, this is 1.
This is the bet amount previous to the most recent bet amount. Initially, this is zero.
Initialize the Fibonacci player.
Uses the superclass method to update the stake with an amount won. It resets recent and previous to their initial values of 1 and 0.
Uses the superclass method to update the stake with an amount lost. This will go “forwards” in the sequence. It updates recent and previous as follows.
There are three deliverables for this exercise.
The game of Roulette has given us an opportunity to build an application with a considerable number of classes and objects. It is comfortably large, but not complex; we have built tremendous fidelity to a real-world problem. Finally, this program produces moderately interesting simulation results.
We note that a great many of our design decisions were not easy to make without exploring a great deal of the overall application’s design. There are two ways to do this exploration: design everything in advance or design just enough but remain tolerant of our own ignorance.
Experienced designers can often design an entire, complex application before building any software. The process of doing this design, however, is internally iterative. Some parts are designed in detail, with tolerance for future changes; then other parts are designed in detail and the two design elements reconciled.
For new designers, we can’t give enough emphasis to the importance of creating a trial design, exploring the consequences of that design, and then doing rework of that design. Too often, we have seen trial designs finalized into deliverables with no opportunity for meaningful rework. In Review of Testability, we presented one common kind of rework to support more complete testing. In Player Class, we presented another kind of rework to advance a design from a stub to a complete implementation.
We also feel compelled to point out the distinction between relatively active and passive classes in this design. We had several passive classes, like Outcome, Bet and Table, which had few responsibilities beyond collecting a number of related attributes and providing simple functions. We also had several complex, active classes, like Game, BinBuilder and all of the variations on Player. These classes, typically, had fewer attributes and more complex methods. In the middle of the spectrum is the Wheel. We find this distinction to be an enduring feature of OO design: there are things and actors; the things tend to be passive, acted upon by the actors. The overall system behavior emerges from the collaboration among all of the objects in the system; primarily – but not exclusively – the behavior of the active classes.
In the first section we will present elements of the game of Craps. Craps is a stateful game, and we’ll describe the state changes in some detail.
We will review some of the bets available on the Craps table in some depth. Craps offers some very obscure bets, and part of this obscurity stems from the opaque names for the various bets. Creating this wide variety of bets is an interesting programming exercise, and the first four exercise chapters will focus on this.
Finally, we will describe some common betting strategies that we will simulate. The betting strategies described in Roulette will be applied to Craps bets, forcing us to examine the Roulette solution for reuse opportunities.
Craps centers around a pair of dice with six sides. The 36 combinations form eleven numbers from 2 to 12; additionally, if the two die are equal, this is called a hardways , because the number was made “the hard way” . The table has a surface marked with spaces on which players can place bets . The names of the bets are opaque, and form an obscure jargon. There are several broad classification of bets, including those which follow the sequence of dice throws that make up a complete game , propositions based on only the next throw of the dice, and hardways bets. These bets will be defined more completely, below.
When the bets are placed, the dice are thrown by one of the players. This number resolves the one-roll bets that are winners or losers; it also determines the state change in the game, which may resolve any game-based winners and losers. The first roll of the dice can be an immediate win or loss for the game, or it can establish the point for the following rounds of this game. Subsequent rolls either make the point and win the game, roll a seven and lose the game, or the game continues. When the game is won, the winning player continues to shoot; a losing player passes the dice around the table to the next player.
In addition to the bets marked on the table, there are some additional bets which are not marked on the table. Some of these are called odds bets, or free odds bets, and pay off at odds that depend on the dice, not on the bet itself. An odds bet must be associated with a bet called a line bet, and are said to be “behind” the original bet; they can be called “behind the line odds” bets. The four line bets will be defined more fully, below.
Note
Casino Variation
There are slight variations in the bets available in different casinos. We’ll focus on a common subset of bets.
The dice form a frequency distribution with values from 2 to 12. An interesting preliminary exercise is to produce a table of this distribution with a small demonstration program. This frequency distribution is central to understanding the often cryptic rules for Craps. See Creating A Dice Frequency Distribution for a small application to develop this frequency distribution.
The Craps game has two states: point off and point on . When a player begins a game, the point is off; the initial throw of the dice is called the “come out roll” . The number thrown on the dice determines the next state, and also the bets that win or lose. The rules are summarized in the following table.
There is a symmetry to these rules. The most frequent number, 7, is either an immediate winner or an immediate loser. The next most frequent numbers are the six point numbers, 4, 5, 6, 8, 9, 10, which form three sets: 4 and 10 are high odds, 5 and 9 are middle odds, 6 and 8 are low odds. The relatively rare numbers (2, 3, 11 and 12) are handled specially on the first roll only, otherwise they are ignored. Because of the small distinction made between the craps numbers (2, 3 and 12), and 11, there is an obscure “C-E” bet to cover both craps and eleven.
Since Python is interpreted, you can enter the following directly in the interpreter and get the frequency of each number.
In Python, you will have to write and run a short program to produce the frequency distribution.
There are four broad classification of bets: those which follow the sequence of dice throws that make up a complete game, those based on just the next throw of the dice (called proposition bets), the hardways bets and the unmarked bets. The game bets are called line bets, can be supplemented with additional odds bets, placed behind the line bet. There are actually two sets of game bets based on the pass line and the come line.
The following illustration shows the left half of a typical craps table layout. On the left are the game bets. On the right (in the center of the table) are the single-roll propositions.
Craps Table Layout
Game Bets. The Game bets have two states. There is a set of bets allowed for the first roll, called the “come out” roll. If a point is established a number of additional bets become available. These are the pass line bets.
In addition to the basic pass line bets, there are also come line bets, which are similar to game bets.
Come Out Roll. When the point is off, the player will be making the come out roll, and only certain bets are available. Once the point is on, all bets are available.
The bets which are allowed on the come out roll are the Pass Line and Don’t Pass Line bets. These bets follow the action of the player’s game. There are several possible outcomes for these two bets.
Point Rolls. Once the point is on, there are three possible outcomes.
Come Line Bets. Once the point is on, the bets labeled Come and Don’t Come are allowed. These bets effectively form a game parallel to the main game, using a come point instead of the main game point. Instead of dropping the large “on” token in a numbered square on the layout, the house will move the individual Come and Don’t Come bets from their starting line into the numbered boxes (4, 5, 6, 8, 9, 10) to show which bets are placed on each point number. There are several possible outcomes for these two bets.
Propositions. There are also a number of one-roll propositions, including the individual numbers 2, 3, 7, 11, 12; also field (2, 3, 4, 9, 10, 11 or 12), any craps (2, 3 or 12), the horn (2, 3, 11 or 12), and a hop bet. These bets have no minimum, allowing a player to cover a number of them inexpensively.
Hardways. There are four hardways bets. These are bets that 4, 6, 8 or 10 will come up on two equal die (the hard way) before they come up on two unequal die (the easy way) or before a 7 is rolled. Hard 6, for example, is a bet that the pair (3,3) will be rolled before any of the other four combinations (1,5), (2,4), (5,1), (4,2) that total 6, or any of the 6 combinations that total 7. These bets can only be placed when the point is on, but they are neither single-roll propositions, nor are they tied to the game point.
Unmarked Bets. There are additional unmarked bets. One is to make a “place bet” on a number; these bets have a different set of odds than the odds bets behind a line bet. Other unmarked bets are to “buy” a number or “lay” a number, both of which involve paying a commission on the bet. Typically, only the six and eight are bought, and they can only be bought when they are not the point.
For programmers new to casino gambling, see Odds and Payouts for more information on odds payments for the various kinds of bets.
Odds and Payouts
Not all of the Craps outcomes are equal probability. Some of the bets pay fixed odds, defined as part of the bet. Other bets pay odds that depend on the point established.
The basic Pass Line, Don’t Pass, Come Line and Don’t Come bets are even money bets. A $5 bet wins an additional $5.
The odds of winning a Pass Line bet is 49.3%. The 1:1 payout does not reflect the actual probability of winning.
The points of 4 and 10 have odds of 3 in 36 to win and 6 in 36 to lose. The points of 5 and 9 have odds of 4 in 36 to win and 6 in 36 to lose. The points of 6 and 8 have odds of 5 in 36 to win and 6 in 36 to lose. The odds, therefore are 2:1, 3:2 and 6:5 for these behind-the-line odds bets, respectively.
The combination of a Pass Line bet plus odds behind the line provides the narrowest house edge. For example, a bet on the Pass Line has an expected return of -1.414%. If we place double odds behind the line with an expected return of 0, the net expected return for the combination is -0.471%.
The various proposition bets have odds stated on the table. Note that these rarely reflect the actual odds of winning. For example, a bet on 12 is a 1/36 probability, but only pays 30:1.
There are 1/36 ways to win a hard six or hard eight bet, 10/36 ways to loose and the remaining 25 outcomes are indeterminate. While a hard 6 or hard 8 should pay 10:1, the actual payment is 9:1. Similarly for a hard 4 or hard 10: they should pay 8:1, the actual payment is 7:1.
All of the Roulette betting strategies apply to Craps. However, the additional complication of Craps is the ability to have multiple working bets by placing additional bets during the game. The most important of these additional bets are the behind the line odds bets. Since these are paid at proper odds, they are the most desirable bets on the layout. The player, therefore, should place a Line bet, followed by a behind the line odds bet.
The other commonly used additional bets are the Come (or Don’t Come) bets. These increase the number of working bets. Since the additional odds bets for these pay proper odds, they are also highly desirable. A player can place a Come bet, followed by a behind the line odds bet on the specific number rolled.
Beyond this, there are the various proposition and hardways bets that can be placed in addition to other bets. While these propositions have odds that are incorrect, some players will count the number of throws in game, and place a “7” bet if the game lasts more than six throws. This is a form of betting against one’s self: there is a Pass Line bet that the game will be won, diluted by a 7 bet that the game will be lost. While the common rationale is that the second bet protects against a loss, it also reduces the potential win. We can simulate this kind of betting and examine the potential outcomes.
Craps has two forms of odds betting: right and wrong. The Pass Line and Come Line, as well as buying odds, are all “right”. The Don’t Pass, Don’t Come and Laying Odds are all “wrong”. Sometimes wrong betting is also called “the dark side”.
Right betting involves odds that provide a large reward for a small wager. The odds on a Pass Line bet for the number 4 are 2:1, you will win double your bet if the point is made. You put up $10 at risk to make $20.
Wrong betting involves odds that provide a small reward for a large wager. The odds on a Don’t Pass Line bet for the number 4 are described as “laid at 2:1” – in effect it is a 1:2 bet, you will win half of what you bet if the point is missed. You put $20 at risk to make $10.
This distinction can be ignored by novice programmers. None of our simulated players are wrong bettors, since this involves putting a large amount at risk for a small payout, which violates one of the basic rules of gambling.
We will present a survey of the classes gleaned from the general problem statement in Problem Statement as well as the problem details in Craps Details. This survey is drawn from a quick overview of the key nouns in these sections.
Given this survey of the candidate classes, we will then do a walkthrough to refine the definitions, and assure ourselves that we have a reasonable architecture. We will make some changes to the preliminary class list, revising and expanding on our survey.
We will also include a number of questions and answers about this preliminary design information. This should help clarify the design presentation and set the stage for the various development exercises in the chapters that follow.
We have divided up the responsibilities to provide a starting point for the development effort. The central principle behind the allocation of responsibility is encapsulation . In reading the background information and the problem statement, we noticed a number of nouns that seemed to be important parts of the Craps game.
The following table summarizes some of the classes and responsibilities that we can identify from the problem statement. This is not the complete list of classes we need to build. As we work through the exercises, we’ll discover additional classes and rework some of these classes more than once.
We also have a legacy of classes available from the Roulette solution. We would like to build on this infrastructure as much as possible.
A good preliminary task is to review these responsibilities to confirm that a complete cycle of play is possible. This will help provide some design details for each class. It will also provide some insight into classes that may be missing from this overview. A good way to structure this task is to do a CRC walkthrough. For more information on this technique see A Walkthrough of Roulette .
The basic processing outline is the responsibility of the Game class. To start, locate the Game card.
Something we’ll need to consider is the complex relationship between the dice, the number rolled on the dice, the game state and the various bets. In Roulette, the wheel picked a random Bin which had a simple list of winning bets; all other bets were losers. In Craps, however, we find that we have game bets that are based on changes to the game state, not simply the number on the dice. The random outcome is used to resolve one-roll proposition bets, resolve hardways bets, change the game state, and resolve game bets.
We also note that the house moves Come Line (and Don’t Come) bets from the Come Line to the numbered spaces. In effect, the bet is changed from one Outcome to another Outcome . This means that a Bet has a kind of state change, in addition to the Game ‘s state change and any possible Player state change.
Important
Stateful Objects
To continue this rant, we find that most interesting IT applications involve stateful objects. Everything that has a state or status, or can be updated, is stateful. Often, designers overlook these state changes, describing them as “simple updates”. However, state changes are almost universally accompanied by rules that determine legal changes, events that precipitate changes, and actions that accompany a state change. Belittling stateful objects causes designers to overlook these additional details. The consequence of ignoring state is software that performs invalid or unexpected state transitions. These kinds of bugs are often insidious, and difficult to debug.
A walkthrough will give you an overview of the interactions among the objects in the working application. You may uncover additional design ideas from this walkthrough. The most important outcome of the walkthrough is a clear sense of the responsibilities and the collaborations required to create the necessary application behavior.
Why is Outcome a separate class? Each object that is an instance of Outcome is merely a number from 2 to 12.
Here we have complex interdependency between the dice, the game states, the bets and outcomes. An outcome has different meanings in different game states: sometimes a 7 is an immediate winner, other times it as an immediate loser. Clearly, we need to isolate these various rules into separate objects to be sure that we have captured them accurately without any confusion, gaps or conflicts.
We can foresee three general kinds of Outcome s: the propositions that are resolved by a single throw of the dice, the hardways that are resolved periodically, and the game bets which are resolved when a point is made or missed. Some of the outcomes are only available in certain game states.
The alternative is deeply nested if-statements. Multiple objects introduce some additional details in the form of class declarations, but objects have the advantage of clearly isolating responsibilities, making us more confident that our design will work properly. If-statements only conflate all of the various conditions into a tangle that includes a huge risk of missing an important and rare condition.
See the discussion under Design Decision – Object Identity for more discussion on object identity and why each Outcome is a separate object.
What is the difference between Dice and Wheel? Don’t they both represent simple collections with random selection?
Perhaps. At the present time, the distinction appears to be in the initialization of the two collections of Bins of the Wheel or Throws of the Dice. We’ll revisit the question in some depth in Soapbox on Overengineering.
Generally, we are slow to merge classes together without evidence that they are really the same thing. In this case, they appear very similar, so we will note the similarities and differences as we work through the design details. There is a fine line between putting too many things together and splitting too many things apart. Generally, the mistake we see most often is putting too many things together, and resolving the differences through complex if-statements and other hidden processing logic.
This chapter will examine the Outcome class, and its suitability for the game of Craps. We’ll present some additional code samples to show a way to handle the different kinds of constuctors that this class will need.
For Craps, we have to be careful to disentangle the random events produced by the Dice and the outcomes on which a Player creates a Bet. In Roulette, this relationship was simple: a Bin was a container of Outcomes; a player’s Bet referenced one of these Outcomes. In Craps, however, we have one-roll outcomes, hardways outcomes, plus outcomes that aren’t resolved until the end of the game. Keeping this in mind, we’ll defer details of dice and game problem until later, and focus on just the bet Outcomes first.
Varietals. There is a rich variety of bet Outcomes. We’ll itemize them so that we can confirm the responsibilities for this class.
Looking more closely at the bets with payout odds that depend on the point rolled, we note that the Come Line (and Don’t Come) odds bets are moved to a specific number when that point is established. For example, the player places a Come bet, the dice roll is a 4; the come bet is moved into the box labeled “4”. Any additional odds bet is placed in this box, also.
This leaves us with the Pass Line and Don’t Pass Line odds bet, which also depend on the point rolled. In this case, the bets are effectively moved to a specific numbered box. In a casino, a large, white, “on” token in placed in the box. The effect is that same as if the house had moved all the Pass Line bets. The odds bet, while physically behind the Pass Line, is effectively in the box identified by the point. Again, the bet is moved from the 1:1 Pass Line to one of the six numbered boxes; any odds bet that is added will be on a single Outcome with fixed odds.
In this case, the existing Outcome class still serves many of our needs. Looking forward, we will have to rework Bet to provide a method that will change to a different Outcome. This will move a line bets to one of the six numbered point boxes.
Additional Features. There are two additional responsibilities that we will need in the Outcome class: more complex odds and a house commission. In Roulette, all odds were stated as n :1, and our winAmount() depended on that. In craps, many of the odds have non-unit denominators. Example odds include 6:5, 3:2, 7:6, 9:5. In a casino, the bets are multiples of $5, $6 or $10 to accomodate the fractions.
Complex Odds. In our simulation, we are faced with two choices for managing these more complex odds: exact fractions or approximate floating-point values. Since exact rational fractions are not part of the Java class library, we’ll use simple double values instead of int values for the player’s stake and the amount won or lost.
An interesting additional feature is to use rational numbers for the stakes and amounts. There are a number of rational number classes available on the Internet, any of which would be suitable for this problem. We will leave it to the interested student to replace the double values with Rational values for the player’s stake and the amounts won and lost with each bet.
In Java, we will have to replace many instances of int with double. This is an unpleasant change, but a consequence of starting out with a built-in primitive type. The only effective escape from this kind of change is to use a class in all cases instead of a primitive type. This would allow us to use different subclasses as our design evolved. If, for example, we use java.lang.Number, we can switch to any subclass without a complex or sweeping change. The down-side of using a class in Python is that the built-in expression syntax only applies to primitive types. With primitive types we can write a + b . With the “language” classes like Integer, we have to write something like new Integer( a.intValue() + b.intValue() ). Withbclasses like BigInteger, we can write something like a.add( b ) .
In Python, we don’t have static compile-time type checking. We can easily replace an integer result with a double result with no impact throughout the application.
Commission Payments. The second extension we have to consider is for the two bets which have a commission when they are created: buy bets and lay bets. The buy bet involves an extra 5% placed with the bet: the player puts down $21, a $20 bet and a $1 commission. A lay bet, which is a wrong bet, involves a risk of a large amount of money against a small win, and the commission is based on the potential winning. For a 2:3 wrong bet, the commission is 5% of the outcome; the player puts down $31 to win $20 if the point is not made.
In both buy and lay cases, the Player sees a price to create a bet of a given amount. Indeed, this generalizes nicely to all other bets. Most bets are simple and the price is the amount of the bet. For buy bets, however, the price is 5% of the amount of the bet; for lay bets, the price is 5% of the possible payout. The open question is the proper allocation of responsibility for this price. Is the price related to the Outcome or the Bet?
When we look at the buy and lay bets, we see that they are based on existing point number Outcome s and share the same odds. However, there are three very different ways create a Bet on one of these point number Outcome s: a bet on the Pass Line (or Don’t Pass Line), a bet on the Come Line (or Don’t Come Line), and a buy (or lay) bet on the number. When we bet via the Pass Line or Come Line, the Line bet was moved to the point number, and the odds bet follows the Line bet. For this reason, the price is a feature of creating the Bet. Therefore, we’ll consider the commission as the price of creating a bet and defer it to the Bet class design.
We observe that the slight error in the Line bet odds is the house’s edge on the Line bet. When we put an odds bet behind the line, the more correct odds dilutes this edge. When we buy a number, on the other hand, the odds are correct and the house takes the commission directly.
We’ll be extending the definition of Outcome. We don’t want to disturb the simple case of Roulette when we add the more complex case of Craps. We’ll do this with an overloaded constructor; a single method name that two different sets of parameters.
In Python, we use optional parameters to provide default values. We declare the default value as part of the method definition. This works well when we are initializing values to any of the immutable object classes. It doesn’t, however, work well for mutable lists and mappings; these must be handled specially. The following example shows a simple required argument, followed by an optional argument.
Note that Python mutable types (lists, sets, maps) should not be provided as default values for an initializer. This is because one initialization object is created when the class is defined, and all instances will share this singleton initializer object. To avoid this undesirable sharing of an instance of the default value, we have to do the following.
Outcome contains a single outcome on which a bet can be placed. In Roulette, each spin of the wheel has a number of Outcomes. For example, the “1” bin has the following winning Outcomes: “1”, “Red”, “Odd”, “Low”, “Column 1”, “Dozen 1-12”, “Split 1-2”, “Split 1-4”, “Street 1-2-3”, “Corner 1-2-4-5”, “Five Bet”, “Line 1-2-3-4-5-6”, “00-0-1-2-3”, “Dozen 1”, “Low” and “Column 1” .
Holds the name of the Outcome. Examples include "1", "Red", "Pass Line".
Holds the numerator portion of odds for this Outcome. This is the multiplier in the odds fraction. For right bets in Craps, this is larger than the denominator. For wrong bets, it is smaller than the denominator.
Holds the denominator portion of odds for this Outcome. For Roulette, this is always 1.
Sets the name and odds from the parameters. Example 1: 6:5 is a right bet, the player will win 6 for each 5 that is bet. Example 2: 2:3 is a wrong bet, they player will win 2 for each 3 that is bet.
Returns the product of this Outcome‘s odds numerator by the given amount, divided by the odds denominator.
An easy-to-read String output method is also very handy. This should return a String representation of the name and the odds. A form that looks like 1-2 Split (17:1) works nicely.
There are three deliverables for this exercise.
For the more advanced student, locate or develop a class to work with rational numbers, represented as an integer numerator and denominator. Use this for all stakes, odds and bet payoffs, replacing any double variables.
In Craps, a throw of the dice may change the state of the game. This close relationship between the Throw and CrapsGame leads to another chicken-and-egg design problem. We’ll design Throw in detail, but provide a rough stub for CrapsGame.
Additionally, this chapter will introduce the subtle issue of over-engineering when doing design work. We’ll revist these issues a number of times in order to provde examples of good design and the issues that can lead to poor design.
The pair of dice can throw a total of 36 unique combinations. These are summarized into fifteen distinct outcomes: the eleven numbers from 2 to 12, plus the four hardways variations for 4, 6, 8 and 10.
In Roulette, the randomized positions on the wheel were called Bin s and each one had a very simple collection of winning Outcome s. In Craps, however, the randomized throws of the dice serve three purposes: they resolve simple one-roll proposition bets, they may resolve hardways bets, and they change the game state (which may resolve game bets). From this we can allocate three responsibilities. We’ll look at each of these responsibilities individually.
One-Throw Propositions. A Throw of the dice includes a collection of proposition Outcomes which are immediate winners. This collection will be some combination of 2, 3, 7, 11, 12, Field, Any Craps, or Horn. For completeness, we note that each throw could also contain one of the 21 hop-bet Outcomes; however, we’ll ignore the hop bets.
Multi-Throw Propositions. A Throw of the dice may resolve hardways bets (as well as place bets and buy bets). There are three possible conditions for a given throw: some bets may be winners, some bets may be losers, and some bets may remain unresolved. This tells us that a Throw may be more than a simple collection of winning Outcomes. A Throw must also contain a list of losing Outcomes. For example, any of the two easy 8 rolls (6-2 or 5-3) would contain winning Outcomes for the place-8 bet and buy-8 bet, as well as a losing Outcome for a hardways-8 bet. The hard 8 roll (4-4), however, would contain winning Outcome s for the place-8 bet, buy-8 bet, and hardways-8 bet
Game State Change. Most importantly, a Throw of the dice can lead to a state change of the Game. This may resolve game-level bets. From the Craps Game, we see that the state changes depend on both the Game state plus the kind of Throw. The rules identify the following species of Throw.
The state change can be implemented by defining methods in Game that match the varieties of Throw. We can imagine that the design for Game will have four methods: craps(), natural(), eleven(), and point(). Each kind of Throw will call the matching method of Game, leading to state changes, and possibly game bet resolution.
The game state changes lead us to design a hierarchy of Throw classes to enumerate the four basic kinds of throws. We can then initialize a Dice object with 36 Throw objects, each of the appropriate subclass. When all of the subclasses have an identical interface, this embodies the principle of polymorphism. For additional information, see On Polymorphism.
In looking around, we have a potential naming problem: both a wheel’s Bin and the dice’s Throw are somehow instances of a common abstraction. Looking forward, we may wind up wrestling with a deck of cards trying to invent a common nomenclature for all of these randomizers. They create random events, and this leads us to a possible superclass for Bin and Throw: RandomEvent.
Currently, we can’t identify any features that we can refactor up into the superclass. Rather than over-engineer this, we’ll hold off on complicating the design until we find something else that is common between our sources of random events. See the Soapbox on Over-Engineering as a continuation of this rant.
Soapbox on Over-Engineering
Some of the horror stories of failed OO design projects seem to have over-engineering as the root cause. Over-engineering often includes the creation of superclasses and interfaces to embody potentially useful features. We suggest examining all engineering efforts by asking “does it solve a real problem?” Focus on potential value tends to dilute the creation of real value.
We note that software is developed to solve a particular problem. If a design consideration does not help solve the problem as presented, we have to classify the design as potential over-engineering. The most common response to this classification is that we will tend to focus too narrowly and build a point solution; the presumption is that point solutions are not as adaptable as something more broadly focused.
Our experience is that when the object design focuses on tangible real-world objects, and models those objects with a high degree of fidelity, these objects are very adaptable; they can be applied to solve a number of real-world problems. When the object design includes a number of irrelevant considerations, it takes too much effort to solve the initial problem, diluting the value of the software.
Additionally, some over-engineering is the result of conflating a number of features into a single class. We prefer to add features slowly so as to clearly separate the various concerns. As an example, it is very easy to conflate Bet and Outcome into a single class, losing site of the fact that bet amounts can change, but the definition of the outcome itself is invariant.
Throw is the superclass for the various throws of the dice. Each subclass is a different grouping of the numbers, based on the rules for Craps.
A Set of one-roll Outcomes that win with this throw.
One of the two die values, from 1 to 6.
The other of the two die values, from 1 to 6.
Creates this throw, and associates the given Set of Outcomes that are winning propositions.
Returns true if d1 is equal to d2. This helps determine if hardways bets have been won or lost.
Calls one of the Game state change methods: craps(), natural(), eleven(), point(). This may change the game state and resolve bets.
An easy-to-read String output method is also very handy. This should return a String representation of the dice. A form that looks like 1,2 works nicely.
Natural Throw is a subclass of Throw for the natural number, 7.
Creates this throw. The constraint is that
. If the constraint is not satisfied, simply raise an exception.
This uses the superclass constructor to add appropriate Outcomes for a throw of 7.
A natural 7 is odd, and can never be made “the hard way”. This method always returns false.
Calls the natural() method of a game Game. This may change the game state and resolve bets.
Craps Throw is a subclass of Throw for the craps numbers 2, 3 and 12.
Creates this throw. The constraint is that
. If the constraint is not satisfied, simply raise an exception.
This uses the superclass constructor to add appropriate Outcomes for a throw of craps.
The craps numbers are never part of “hardways” bets. This method always returns false.
Calls the craps() method of a game Game. This may change the game state and resolve bets.
Eleven Throw is a subclass of Throw for the number, 11. This is special because 11 has one effect on a come-out roll and a different effect on point rolls.
Creates this throw. The constraint is that
. If the constraint is not satisfied, simply raise an exception.
This uses the superclass constructor to add appropriate Outcomes for a throw of 11.
Eleven is odd and never part of “hardways” bets. This method always returns false.
Calls the eleven() method of a game Game. This may change the game state and resolve bets.
Point Throw is a subclass of Throw for the point numbers 4, 5, 6, 8, 9 or 10.
Creates this throw. The constraint is that
. If the constraint is not satisfied, simply raise an exception.
This uses the superclass constructor to add appropriate Outcomes for a throw of craps.
Eleven is odd and never part of “hardways” bets. This method always returns false.
Returns true if d1 is equal to d2. This helps determine if hardways bets have been won or lost.
Calls the point() method of a game Game. This may change the game state and resolve bets.
CrapsGame is a preliminary design for the game of Craps. This initial design contains the interface used by the Throw class hierarchy to implement game state changes.
The current point. This will be replaced by a proper State design pattern.
Creates this Game. This will be replaced by a constructor that uses Dice and CrapsTable.
Resolves all current 1-roll bets.
If the point is zero, this was a come out roll: Pass Line bets are an immediate loss, Don’t Pass Line bets are an immediate win.
If the point is non-zero, Come Line bets are an immediate loss; Don’t Come Line bets are an immediate win.
The state doesn’t change.
A future version will delegate responsibility to the craps() method of a current state object.
Resolves all current 1-roll bets.
If the point is zero, this was a come out roll: Pass Line bets are an immediate win; Don’t Pass Line bets are an immediate loss.
If the point is non-zero, Come Line bets are an immediate win; Don’t Come bets are an immediate loss; the point is also reset to zero because the game is over.
Also, hardways bets are all losses.
A future version will delegate responsibility to the natural() method of a current state object.
Resolves all current 1-roll bets.
If the point is zero, this is a come out roll: Pass Line bets are an immediate win; Don’t Pass Line bets are an immediate loss.
If the point is non-zero, Come Line bets are an immediate win; Don’t Come bets are an immediate loss.
The game state doesn’t change.
A future version will delegate responsibility to the eleven() method of a current state object.
Resolves all current 1-roll bets.
If the point was zero, this is a come out roll, and the value of the dice establishes the point.
If the point was non-zero and this throw matches the point the game is over: Pass Line bets and associated odds bets are winners; Don’t Pass bets and associated odds bets are losers; the point is reset to zero.
Finally, if the point is non-zero and this throw does not match the point, the state doesn’t change; however, Come point and Don’t come point bets may be resolved. Additionally, hardways bets may be resolved.
A future version will delegate responsibility to the current state’s point() method to advance the game state.
An easy-to-read String output method is also very handy. This should return a String representation of the current state. The stub version of this class has no internal state object. This class can simply return a string representation of the point; and the string "Point Off" when point is zero.
There are eleven deliverables for this exercise.
Unlike Roulette, where a single Bin could be identified by the number in the bin, dice use a pair of numbers. In this chapter, we design Dice, as well as designing an inner class that is used only to make a single key out of a composite object.
The dice have two responsibilities: they are a container for the Throw s and they pick one of the Throws at random.
We find that we have a potential naming problem: both a Wheel and the Dice are somehow instances of a common abstraction. Looking forward, we may wind up wrestling with a deck of cards trying to invent a common nomenclature for the classes. They create random events, and this leads us to a possible superclass: Randomizer. Rather than over-engineer this, we’ll hold off on adding this design element until we find something else that is common among them. See Soapbox on Over-Engineering for some additional opinions on this subject.
Container. Since the Dice have 36 possible Throws, it is a collection. We can review our survey of the collections in Design Decision – Choosing A Collection for some guidance here. In this case, we note that the choice of Throw can be selected by a random numeric index.
For Python programmers, this makes the a list very appealing.
After selection a collection type, we must then deciding how to index each Throw in the Dice collection. Recall that in Roulette, we had 38 numbers: 1 to 36, plus 0 and 00. By using 37 for the index of the Bin that contained 00, we had a simple integer index for each Bin.
For Craps it seems better to use a two-part index with the values of two independent dice.
Index Choices. In this case, we have two choices for computing the index into the collection,
Decision Forces. There are a number of considerations to choosing between these two representations.
If we create a new class to contain each unique pair of integers, we can then use that object to be the index for a Map. The Map associates this “pair of numbers” object with its Throw.
In Python, a tuple does this job nicely. We don’t need to define a whole new class.
We can pick one of the existing NumberPair objects at random from the collection of keys for the Map that contains the individual Throws.
We can transform the two numeric dice values to a single index value for the sequence. This is a technique called Key Address Transformation; we transform the keys into the address (or index) of the data.
We create the index, , from two dice,
,
, via a simple linear equation:
.
We can reverse this calculation to determine the two dice values from an index. .
Because of encapsulation, the choice of algorithm is completely hidden within the implementation of Dice.
While the numeric calculation seems simple, it doesn’t obviously scale to larger collections of dice very well. While Craps is a two-dice game, we can imagine simulating a game with larger number of dice, making this technique complex.
Solution. Our recommendation is to encapsulate the pair of dice in a tuple instance. We can use this object as index into a dict that associates a tuple with a Throw.
More advanced students can create a class hierarchy for Dice that includes all of the various implementations as alternative subclasses.
Random Selection. The random number generator in random.Random helps us locate a Throw at random.
First, we can get the list of keys from the dict that associates a tuple of dice numbers with a Throw.
Second, we use Random.choice() to pick one of these tuples.
We use this randomly selected tuple to return the selected Throw.
We need to update Throw to return an appropriate key object.
There are two parts to this. First, we need a “getter” to return the key.
We’ll add a method to Throw to return the tuple that is a key for this Throw.
Second, we need to update the Throw constructor to create the key when the Throw is being built. This will allow all parts of the application to share references to a single instance of the key.
In Python, it’s often easiest to use a “named tuple” rather than use a simple tuple.
This can make the tuple slightly easier to work with.
Contains the face of one die.
Contains the face of the other die.
These attributes are built for us by the collections.namedtuple function.
The constructor are built for us by the collections.namedtuple function.
Dice contains the 36 individual throws of two dice, plus a random number generator. It can select a Throw at random, simulating a throw of the Craps dice.
This is a dict that associates a NumberPair with a Throw.
Adds the given Throw to the mapping maintained by this instance of Dice. The key for this Throw is available from the Throw.getKey() method.
Returns the randomly selected Throw.
First, get the list of keys from the throws.
The random.Random.choice() method will select one of the available keys from the the list.
This is used to get the corresponding Throw from the throws Map.
While not needed by the application, unit tests may need a method to return a specific Throw rather than a randomly selected Throw.
This method takes a particular combination of dice, locates (or creates) a NumberPair, and returns the appropriate Throw.
There are three deliverables for this exercise. In considering the unit test requirements, we note that we will have to follow the design of the Wheel class for convenient testability: we will need a way to get a particular Throw from the Dice, as well as replacing the random number generator with one that produces a known sequence of numbers.
The Dice class.
A class which performs a unit test of building the Dice class. The unit test should create several instances of Outcome, two instances of Throw, and an instance of Dice. The unit test should establish that Throws can be added to the Dice.
A class which performs a demonstration of selecting non-random values from the Dice class. By setting a particular seed, the Throws will be returned in a fixed order. To discover this non-random order, a demonstration should be built which includes the following.
Note that the sequence of random numbers is fixed by the seed value. The default constructor for a random number generator creates a seed based on the system clock. If your unit test sets a particular seed value, you will get a fixed sequence of numbers that can be used to get a consistent result.
First, we note that premature optimization is a common trap.
“We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified”
—Donald Knuth
“Structured Programming with Goto Statements”. Computing Surveys 6:4 (1974), 261-301.
In this exercise, it appears that the NumberPair is superfluous.
We can work directly with a list of Throws, bypassing any mapping between NumberPair and Throw.
Removing this needless code is an exercise that should be considered, but not done at this time. In the Design Cleanup and Refactoring chapter, we’ll clean up this design to remove several things which – in retrospect – will be poor design decisions.
This chapter identifies some subtleties of bets in Craps, and proposes some rather involved design rework to resolve the issues that are raised. Specifically, we didn’t allow for an Outcome to have odds based on a throw of the dice. We’ll need to add this feature carefully.
We’ll present two solutions: “Design Heavy” and “Design Light”. While we recommend “Design Heavy”, we find that many programmers and project managers object to the apparent over-engineering of the approach. We have found that it is almost impossible justify the design heavy approach. See our Soapbox on Justification for more on this common blind spot. Instead, we provide the “light” alternative, which will become increasingly unwieldy throughout this part. At some point, we will eventually be forced to adopt the design heavy approach.
We’ll present sidebars on the proper design of subclasses and the proper architecture for the packages that make up an application. Additionally, we’ll provide a brief FAQ on the design issues raised.
Enumerating each Outcome in the 36 Throws could be a tedious undertaking. It may be slightly simpler to hand-code the various combinations., For complete flexibility, we’ll design a Builder to enumerate all of the Throws and their associated list of Outcomes. This will build the Dice, finishing the elements we deferred from Dice Class.
The 36 ways the dice fall can be summarized into 15 kinds of Throw, with a fixed distribution of probabilities. We could develop a Builder class that enumerates the 36 individual Throws, assigning the appropriate attribute values to each object. An alternative is for a Builder class to step through the 15 kinds of Throws, creating the proper number of instances of each kind. It seems slightly simpler to examine each pair of dice and determine which kind of Throw to build.
The proposition bets define eight one-roll Outcomes that need to be assigned to the various Throw instances we are building. We will share references to the following Outcome objects among the Throws:
We can use the following algorithm for building the Dice.
Building Dice
For All Faces Of Die 1. For all , such that
:
For All Faces Of A Die 2. For
, such that
:
Sum the Dice. Compute the sum,
.
Craps? If s is in 2, 3, and 12, we create a CrapsThrow instance. This will include a reference to one of the 2, 3 or 12 Outcome s, plus references to the Any Craps, Horn and Field Outcomes.
Point? For s in 4, 5, 6, 8, 9, and 10 we will create a PointThrow instance.
Hard? When
, this is a hard 4, 6, 8 or 10.
Easy? Otherwise,
, this is an easy 4, 6, 8 or 10.
Field? For s in 4, 9 and 10 we include a refrence to the Field Outcome. Note that 2, 3, and 12 Field outcomes where handled above under Craps.
Natural? For s of 7, we create a NaturalThrow instance. This will also include a reference to the 7 Outcome.
Eleven? For s of 11, we create an ElevenThrow instance. This will include references to the 11, Horn and Field Outcomes.
Our detailed examination of the bets has turned up an interesting fact about Field bets and Horn bets: these bets also have payoffs that depend on the number on the dice. In our earlier Outcome Class, we missed this nuance, and did not provide for a Dice.winAmount() method that depends on the Dice. We’ll present the solution to this as a fairly formal procedure that we find helps to resolve these kind of design issues.
Problem Statement. Unlike the Pass Line and Come Line bets, Field bets and Horn bets have payoffs that depend on the number currently showing on the dice. Unlike Come Line bets, these bets are not moved on the table to a new Outcome when the point is established. How do we compute the win amount for Field and Horn bets?
Context. Our design objective is to have a Bet reference a single Outcome object. The Bet is compared with a Set of winning Outcomes. We’d like to have a single horn Outcome object and field Outcome object shared by multiple instances of Throw to make this comparison work in a simple, general way.
As an example, the player can place a bet on the Field Outcome, which is shared by all of the field numbers (2, 3, 4, 9, 10, 11, 12). The problem we have is that for 2 and 12, the outcome pays 2:1 and for the other field numbers it pays 1:1, and our design only has a single set of payout odds.
Forces. In order to handle this neatly, we have two choices.
One choice is to have two Outcomes bundled into a single bet. This allows us to create a Bet that includes both the low-odds field outcome (3, 4, 9, 10 and 11) plus the high-odds field outcome (2 and 12). One of the nice features of this is that it is a small expansion to Bet. However, further research shows us that there are casino-specific variations on the field bet, including the possibility of three separate Outcomes for those casinos that pay 3:1 on 12. This makes construction of the Bet rather complex, and dilutes the responsibility for creating a proper Bet. Once we put multiple Outcomes into a Bet, we need to assign responsibility for keeping the bundle of Field Outcomes together.
Pursuing this further, we could expand Outcome to follow the Composite design pattern. We could introduce a subclass which was a bundle of multiple Outcomes. This would allow us to keep Bet very simple, but we still have to construct appropriate composite Outcome instances for the purpose of creating Bets. Rather than dive into allocating this responsibility, we’ll look at other alternatives, and see if something turns up that doesn’t add as much complexity.
Solution. Our first design decision, then, is to add an additional method to Outcome that calculates the win amount given the current Throw.
Consequences. There are a number of consequences of this design decision. The next design problem we have to solve is where in the Outcome class hierarchy do we add this additional winAmount() method? After that, we will need to determine the signature of the revised winAmount() method. This leads us to two rounds of additional problem-solving.
Consequent Problem: Class Hierarchy. While it appears simplest to add a “variable odds” subclass of Outcome with a new method that uses the number on the dice, we find that there are some additional considerations.
Our design depends on polymorphism among objects of the Outcome class: all instances have the same interface. In order to maintain this polymorphism, we need to add this new method to the superclass. The superclass version of the new winAmount() based on the Craps Throw can return an answer computed by the original winAmount() method. We can then override this in a subclass for Field and Horn bets in Craps.
An alternative is to break polymorphism and create a Craps-specific Outcome subclass. This would ripple out to Throw, Bet, Table, Player. This is an unpleasant cascade of change, easily avoided by assuring that the entire Outcome class hierarchy is polymorphic.
Solution. Our second design decision, then, is to insert the change at the top of the Outcome class hierarchy, and override this new winAmount() method in just the few subclasses that we use to create Horn and Field Outcomes.
The differences are minor, merely a list of numbers and odds. However, our design objective is to minimize if-statements. We prefer many simple classes over a single class with even a moderately complex method.
Consequent Problem: Dependencies. We’ve decided to add a dependency to the Outcome.winAmount(); specifically, we’ve made it dependent on a Throw object. While this works well for Craps, it makes very little sense for Roulette.
To allow the games to evolve independently, we should not have any dependencies between games. This means that a general-purpose class like Outcome can’t depend on a game-specific class like Throw. A general-purpose class has to depend on some a superclass (or interface) that encompasses the Craps-specific Throw as well as the Roulette-specific Bin.
Additional Classes. To break the dependency between a general-purposes class and a game-specific class, we need introduce a superclass that includes both Throw and Bin as subclasses. This will Outcome to work with either Craps and Roulette; keeping them independent of each other.
We could call the parent class a RandomEvent. This new class would have an integer event identifier: either the wheel’s bin number or the total of the two dice. Given this new superclass, we could then rearrange both Throw and Bin to be subclasses of RandomEvent. This would also force us to rework parts of Wheel that creates the Bins.
A benefit of creating a RandomEvent class hierarchy is that we can change the new winAmount() method to compute the win amount given a RandomEvent instead of a highly Craps-specific Throw. This makes the winAmount() method far more generally useful, and keeps Craps and Roulette separate from each other.
This technique of reworking Throw and Bin to be subclasses of a common superclass is a fairly common kind of generalization refactoring. We observe that more experienced designers develop an ability to locate this kind of commonality.
Less experienced designers tend to conflate too many nearly-common features into a single class, leading to a brittle design that cannot easily be reworked. In our example, we considered lifting one common attribute to the superclass so that a related class (Outcome) could operate on instances of these two classes in a uniform manner. For more information on this rework, see Soapbox on Subclasses.
Approaches. We will present two alternative designs paths: minimal rework, and a design that is at the fringe of over-engineering. The minimal design effort has one unpleasant consequence: Roulette’s Outcome instances depend on the Craps-related Throw class. This leads to an entanglement between Roulette and Craps around a feature that is really a special case for Craps only. This kind of entanglement may limit our ability to successfully reuse these classes. See Soapbox on Architecture for a discussion on this issue. The possible over-engineering prevents this entanglement. We consider this separation very desirable, even in an application as small as this exercise.
Designers new to OO techniques are sometimes uncomfortable with the notion of highly-specialized subclasses. We’ll touch on two reasons why specialized subclasses are far superior to the alternatives.
One approach to creating common features is to add nested if-statements instead of creating subclasses. In our example, we might have elected to add if-statements that would determine if this was a variable-odds outcome, and then determine which of the available odds would be used. The first test (for being a variable-odds outcome) is, in effect, a determination of the subclass of Outcome. Since an object’s membership in a class determines the available methods, there’s no reason to test for membership. In most cases, a test for membership in a class is also done at construction time. If we use that initial decision to select the subclass (with appropriate subclass-specific methods) we do not repeat that decision every time a method is invoked. This is the efficiency rationale for introducing a subclass to handle these special cases.
The more fundamental reason is that specialized subclasses usually represent distinct kinds of real-world things, which we are modeling in software-world. In contrast, a procedural view-point is that the variant behavior is a special case: a condition or situation that requires unique processing. This view often confuses the implementation of the special case (via an if-statement) with the nature of the specialization. In our case, we have a number of distinct things, some of which are related because they have common attributes and behavior. The Outcome is fairly intangible, so the notion of commonality can be difficult to see. Contrast this with Dice and Wheel, which are tangible, and are obviously different things, however they have common behavior and a common relationship with a casino game.
Design Aid. Sometimes it helps to visualize this by getting pads of different-colored sticky paper, and making a mockup of the object structure on whiteboard. Each class is represented by a different color of paper. Each individual object is an individual slip of sticky paper. To show the relationship of Dice, Throw and Outcome, we draw a large space on the board for an instance of Dice which has smaller spaces for 36 individual Throws.
In one Throw instance, we put a sticky for Outcome s 2, Field, Horn, and Any Craps. We use three colors of stickies to show that 2 and Any Craps are ordinary Outcome s, Field is one subclass and Horn is another subclass.
In another Throw instance, we put a sticky for Outcome 7, using the color of sticky for ordinary Outcomes.
This can help to show what the final game object will be examining to evaluate winning bets. The game object will have a list of winning Outcomes and bet Outcome s actually on the table. When a 2 is thrown, the game process will pick up each of the stickies, compare the winning Outcome s to the bets, and then use the method appropriate to the color of the sticky when computing the results of the bet.
There are a number of advanced considerations behind the Design Heavy section. This is a digression on architecture and packages of classes. While this is beyond the basics of OO design, it is a kind of justification for the architecture we’ve chosen.
A good design balances a number of forces. One example of this is our use of a class hierarchy to decompose a problem into related class descriptions, coupled with the collaboration among individual objects to compose the desired solution. The desired behavior emerges from this tension between decomposition of the class design and composition of the objects to create the desired behavior.
Another example of this decomposition vs. composition is the organization of our classes into packages. We have, in this book, avoided discussion of how we package classes. It is a more subtle aspect of a good design, consequently we find it challenging to articulate sound principles behind the layers and partitions of a good collection of packages. There are some design patterns that give us packaging guidance, however.
Design Patterns. One packaging pattern is the 5-Layer Design, which encourages us to separate our design into layers of view, control, model, access and persistence. For our current application, the view is the output log written to System.out, the control is the overall main method and the Simulation class, the model is the casino game model. We don’t have any data access or data persistence issues, but these are often implemented with JDBC and a relational database.
While one of the most helpful architectural patterns, this version of the 5-Layer Design still leaves us with some unsatisfying gaps. For example, common or infrastructure elements don’t have a proper home. They seem to form another layer (or set of layers). Further, the model layer often decomposes into domain elements, plus elements which are specializations focused on unique features of the business, customer, vendor or product.
Another packaging pattern is the Sibling Partition, which encourages us to separate our application-specific elements to make them parallel siblings of a superclass so that we can more easily add new applications or remove obsolete applications. In this case, each casino game is a separate application of our casino game simulator. At some point, we may want to isolate one of the games to reuse just the classes of that game in another application. By making the games proper siblings of each other, and children of an abstract parent, they can be more easily separated.
General vs. Specific. Applying these layered design and application partitioning design patterns causes us to examine our casino game model more closely and further sub-divide the model into game-specific and game-independent elements. If necessary, we can further subdivide the general elements into those that are part of the problem domain (casino games) and those that are even more general application infrastructure (e.g., simulation and statistics). Our ideal is to have a tidy, short list of classes that provides a complete game simulation. We can cut our current design into three parts: Roulette, Craps and application infrastructure. This allows us to compose Roulette from the Roulette-specific classes and the general infrastructure classes, without including any of the Craps-specific classes.
The following architecture diagram captures a way to structure the packages of these applications.
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Our class definitions have implicitly followed this architecture, working from general to game- and player-specific classes. Note that our low-level classes evolved through several increments. We find this to be superior to attempting to design the general classes from the outset: it avoids any over-engineering of the supporting infrastructure. Additionally, we we careful to assure that our top-level classes contain minimal processing, and are are compositions of lower-level object instances.
Dependencies. A very good design could carefully formalize this aspect of the architecture by assuring that there are minimal references between layers and partitions, and all references are “downward” references from application-specific to general infrastructure packages. In our case, the Simulator should have access only to Player and Game layers.
Two Game partitions should be separate with no references between these packages.
Finally, we would like to assure that the Player and Game don’t have invalid “upward” references to the Simulator. There are some tools that can enforce this architectural separation aspect of the design. Lacking tools, we need to exercise some discipline to honor the layers and partitions.
Why is do we need RandomEvent? Isn’t this overengineering?
Clean separation between Craps and Roulette isn’t necessary, but is highly desirable. We prefer not to have Roulette classes depend in any way on Craps classes. Instead of having them entangled, we factor out the entanglement and make a new class from this. This is also called reducing the coupling between classes. We prefer the term “entanglement” because it has a suitably negative connotation.
Didn’t we notice the need for this RandomEvent class back in Soapbox on Overengineering? Why was it a bad idea then and a good idea now?
Some experienced designers immediately notice this kind of commonality between Throw and Bin, and can handle it without getting badly side-tracked. However, some beginning designers can spend too much time searching for this kind of commonality. We’ve seen examples of improper factoring where classes were combined in an early phase of design, only to lead to expensive rework when distinctions were uncovered later, invalidating large parts of the design. We prefer to wait until we are sure we’ve understood the problem and the solution before committing to a particular class design.
Isn’t the goal to leave Roulette alone? Isn’t the ideal to extend the design with subclasses, leaving the original design in place?
Yes, the goal is to extend a design via subclasses. But, this is only possible if the original design is suitable for extension by subclassing. We find that it is very difficult to create a design that both solves a problem and can be extended to solve a number of related problems.
Note that a general, extensible design has two independent feature sets. On one level it solves a useful problem. Often, this is a difficult problem in its own right, and requires considerable skill merely to ferret out the actual problem and craft a usable solution within budget, time and skill constraints.
On another, deeper level, our ideal design can be extended. This is a different kind of problem that requires us to consider the various kinds of design mutations that may occur as the software is maintained and adapted. This requires some in-depth knowledge of the problem domain. We need to know how the current problem is a specialization of other more general problems. We also need to note how our solution is only one of many solutions to the current problem. We have two dimensions of generalization: problem generalization as well as solution generalization.
Our initial design for roulette just barely provided the first level of solution. We didn’t make any effort to plan for generalization. The “Design Heavy” solution generalizes Roulette to make it more suitable for Craps, also. Looking forward, we’ll have to make even more adjustments before we have a very tidy, general solution.
It is very difficult to justify design rework. Most managers and designers share a common blind-spot on the amount of evidence required to justify rework. The conversations have the following form.
Architect. We need to disentangle Roulette and Craps so that Craps is not a subclass of Roulette. I’ve got a revised design that will take X hours of effort to implement.
Manager. I’ll need some justification. Why do we have to fix it?
Architect. The structure is illogical: Craps isn’t a special case of Roulette, they’re independent specializations of something more general.
Manager. Illogical isn’t a good enough justification. Our overall problem domain always contains illogical special cases and user-oriented considerations. You’ll have to provide something more concrete.
Architect. Okay, in addition to being illogical, it will become too complex: in the future, we’ll probably have trouble implementing other games.
Manager. How much trouble? Will it be more than X hours of effort?
Architect. When we include maintenance, adaptation and debugging, the potential future cost is probably larger than 2X hours of effort. And it’s illogical.
Manager. Probably larger? We can’t justify rework based on probable costs. You’ll need something tangible. Will it save us any lines of code?
Architect. No, it will add lines of code. But it will reduce maintenance and adaptation costs because it will be more logical.
Manager. I conclude that the change is unjustified.
In many cases, we have a manager who’s mind is made up and who won’t be swayed by facts. This is generally a symptom of an organization that is thinking-impaired. Typically, it is impossible to engage project managers further than this. However, in some cases, conversation continues in the following vein.
Architect. Unjustified? Okay, please define what constitutes adequate justification for improvements?
Manager. Real savings of effort is the only justification for disrupting the schedule.
Architect. And future effort doesn’t count?
Manager. The probability of savings in the future isn’t tangible.
Architect. And more logical doesn’t count?
Manager. If course not; it doesn’t result in real schedule savings.
Architect. Real schedule savings? That’s absurd. The schedule is a notional projection of possible effort. A possible reduction in the possible effort is just as real as the schedule.
Manager. Wouldn’t it be simpler to...?
For reasons we don’t fully understand, a schedule becomes a kind of established fact. Any change to the schedule requires other established facts, not the conjecture of design. For some reason, the idea that the schedule is only a conjecture, based on a previously conjectured design doesn’t seem to sway managers from clinging to the schedule. This makes it nearly impossible to justifiy making a design change. The only way to accumulate enough evidence is to make the design change and then measure the impact of the change. In effect, no level of proof can ever override the precedence-setting fact of the schedule.
To continue this rant, the same kind of “inadequate evidence” issue seems to surround all technology changes. We have had conversations like the one shown above regarding object-oriented design, the use of objects in relational databases, the use of object-oriented databases, the use of open-source software, and the use of the star-schema data model for reporting and analysis. For many people, it seems that change can only be considered based on established facts; we observe that these facts can only be established by making a change. While this chicken-and-egg problem is easily resolved by recognizing that the current architecture or schedule is actually not an established fact, this is a difficult mental step to take.
As a final complaint, we note that “wouldn’t it be simpler” is best described as a management trump card. The point is rarely an effort to reduce code complexity, but to promote management understanding of the design. While this is a noble effort, there is sometimes a communication gap between designers and managers. It is incumbent both on designers to communicate fully, and on managers to provide time, budget and positive reinforcement for detailed communication of design considerations and consequences.
In order to get the Craps game to work, we can minimize the amount of design. This minimal rework is a revision to Outcome.
This is followed by Common Design: the two subclasses of Outcome (OutcomeField, and OutcomeHorn), and the initializer for Dice.
This minimal design effort has one unpleasant consequence: Roulette’s Outcome instances will depend on the Craps-specific Throw class. This entangles Roulette and Craps around a feature that is really a special case for Craps only. This kind of entanglement often limits our ability to successfully package and reuse these classes.
The class Outcome needs a method to compute the win amount based on a Throw.
In Python, we use optional parameters to achieve the same degree of flexibility.
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denominator.
For Craps Horn bet and Field bets, a subclass will override this method to check the specific value of the throw and compute appropriate odds.
In order to produce a solution that has a better architecture with more reusable components, we need to do some additional generalization. This design effort disentangles Roulette and Craps; they will not share the Throw class that should only be part of Craps. Instead, the highly reused Outcome class depends only on a new superclass, RandomEvent, which is not specific to either game.
Given the new generalization, RandomEvent, we can rework the Outcome to use this for computing win amounts. We will have to rework Bin, Wheel, and Throw to make proper use of this new superclass.
Then we can move to the Common Design features: the craps-specific subclasses (OutcomeField, and OutcomeHorn), and the initializer for Dice.
The class RandomEvent is the superclass for the random events on which a player bets. This includes Bin of a Roulette wheel and Throw of Craps dice.
The class Bin needs to be a subclass of RandomEvent.
The set of outcomes is removed from Bin; it’s defined in RandomEvent.
The class Throw needs to be a subclass of RandomEvent.
The set of outcomes is removed from Throw; it’s defined in RandomEvent.
The class Outcome needs a method to compute the win amount based on a RandomEvent.
In Python, we use optional parameters to achieve the same degree of flexibility.
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denominator.
For Craps Horn bet and Field bets, a subclass will override this method to check the specific value of the event and compute appropriate odds.
OutcomeField contains a single outcome for a field bets that has a number of different odds, and the odds used depend on a RandomEvent.
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denominator.
This should return a String representation of the name and the odds. A form that looks like Field (1:1, 2 and 12 2:1) works nicely.
OutcomeHorn contains a single outcome for a Horn bet that has a number of different odds, and the odds used depend on a RandomEvent.
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denominator.
This should return a String representation of the name and the odds. A form that looks like Horn (27:4, 3:1) works nicely.
ThrowBuilder initializes the 36 Throws, each initialized with the appropriate Outcomes. Subclasses can override this to reflect different casino-specific rules for odds on Field bets.
Initializes the ThrowBuilder.
There are two deliverables for the light version of this exercise.
There are five deliverables for the heavy version of this exercise.
There a six common deliverables no matter which approach you take.
The correct distribution of throws is as follows. This information will help confirm the results of ThrowBuilder.
This chapter will examine the Bet class, and its suitability for the game of Craps. We’ll expand the design to handle additional complications present in real casino games.
A Bet is an amount that the player has wagered on a specific Outcome. This is a simple association of an amount, an Outcome, and a specific Player.
When considering the various line bet outcomes (Pass Line, Come Line, Don’t Pass and Don’t Come), we noted that when a point was established the bet was either a winner or a loser, or it was moved from the line to a particular number based on the throw of the dice. We’ll need to add this responsibility to our existing definition of Bet. This responsibility can be implemented as a setOutcome() method that leaves the amount intact, but changes the Outcome from the initial Pass Line or Come Line to a specific point outcome.
A complexity of placing bets in Craps is the commission (or vigorish) required for Buy bets and Lay bets. This is a 5% fee, in addition to the bet amount. A player puts $21 down, which is a $20 bet and a $1 commission. We’ll need to add a a commission or vig responsibility to our definition of Bet.
This price to place a bet generalizes nicely to all other bets. For most bets, the price is simply the amount of the bet. For Buy bets, the price is 5% higher than the amount of the bet; for Lay bets, the price depends on the odds. This adds a new method to Bet that computes the price of the bet. This has a ripple effect throughout our Player hierarchy to reflect this notion of the price of a bet. We will have to make a series of updates to properly deduct the price from the player’s stake instead of deducting the amount of the bet.
There are two parts to creating a proper Craps bet: a revision of the base Bet to separate the price from the amount bet, and a CommissionBet subclass to compute prices properly for the more complex Craps bets.
Bet associates an amount and an Outcome. The Game may move a Bet to a different Outcome to reflect a change in the odds used to resolve the Bet. In a future round of design, we can also associate a it with a Player.
Computes the price for this bet. For most bets, the price is the amount. Subclasses can override this to handle buy and lay bets where the price includes a 5% commission on the potential winnings.
For Buy and Lay bets, a $20 bet has a price of $21.
CommissionBet is a Bet with a commission payment (or vigorish) that determines the price for placing the bet.
Holds the amount of the vigorish. This is almost universally 5%.
Computes the price for this bet. There are two variations: Buy bets and Lay bets.
A Buy bet is a right bet; it has a numerator greater than or equal to the denominator (for example, 2:1 odds, which risks 1 to win 2), the price is 5% of the amount bet. A $20 Buy bet has a price of $21.
A Lay bet is a wrong bet; it has a denominator greater than the numerator (for example, 2:3 odds, which risks 3 to win 2), the price is 5% of 2/3 of the amount. A $30 bet Layed at 2:3 odds has a price of $31, the $30 bet, plus the vig of 5% of $20 payout.
There are three deliverables for this exercise.
We could rework the entire Player class hierarchy for Roulette to compute the Bet‘s price in the placeBets(), and deduct that price from the player’s stake. For Roulette, however, this subtlety is at the fringe of over-engineering, as no bet in Roulette has a commission.
In Roulette, the table was a passive repository for Bets. In Craps, however, the table and game must collaborate to accept or reject bets based on the state of the game. This validation includes rules based on the total amount bet as well as rules for the individual bets.
In Throw Class, we roughed out a stub version of CrapsGame that could be used to test Throw. In this section, we will extend this stub with additional features required by the table.
The Table is where the Bets are placed. The money placed on Bets on the Table is “at risk”; these bets either win an amount based on the odds, or lose the amount placed by the player.
The responsibility for a push is something we can allocate to Game, the commission price belongs to Bet.
Some Bets (specifically Pass, Don’t Pass, Come and Don’t Come) may have their Outcome changed. The use case works like this.
The bet is created by the Player with one Outcome, for example, “Pass”. The Table accepts this bet.
That bet may be resolved as an immediate winner or loser. The Game and Throw will determine if the Bet is a winner as placed.
More commonly, the Bet may be changed to a new Outcome, possibly with different odds.
In a casino, the chips initially placed on Come Line and Don’t Come bets are relocated to a point number box to show this change. In the case of Pass Line and Don’t Pass bets, the “On” marker is placed on the table to show an implicit movement of all of those line bets.
The change is the responsibility of the Game; however, the Table must provide an iterator over the line bets that the Game will move.
Game State. Each change to the game state changes the allowed bets as well as the active bets. When the point is off, most of the bets on the table are not allowed, and some others are inactive, or not “working”.
When a point is established, all bets are allowed, and all bets are active. We’ll examine the rules in detail, below.
The Table must be able to reject bets which are inappropriate for the current Game state.
We’ve identified two responsibilities that are part of handling Craps:
Clearly, these require additional collaboration between Game and Table. We will have to add methods to CrapsGame that will allow or deny some bets, as well as methods that will active or deactive some bets.
We have to choose where in the class hierarchy we will retrofit this additional collaboration.
Problem. Should we put these new responsibilities at a high-enough level that we’ll add table and game collaboriation to the Table class used for Roulette?
Forces. If we do add this for Roulette, we could simply return true from the method that validates the allowed bets, since all bets are allowed in Roulette.
However, our overall application design does not depend on all subclasses of Game and Table being polymorphic; we will never mix and match different combinations of Craps Table and Roulette Game.
Solution. Because we don’t need polymorphism between Craps and Roulette, we can create a subclass of Table with a more complex interface and leave Roulette untouched. Perhaps we’ll call it CrapsTable.
After deciding to create a CrapsTable subclass, we have several consequent decisions. First, we turn the interesting question of how best to allocate responsibility for keeping the list of Outcomes which change with the game state.
Problem. Which class determines the valid and invalid Outcomes?
Forces. We can see three places to place this responsibility.
The third choice seems to focus bet-handling responsibility mostly on CrapsGame.
Solution We need to place a valid method in the CrapsTable; but the Table simply delegates the details to the CrapsGame. This allows the Player to deal directly with the Table. But it centralizes the actual decision-making on the Game.
Consequences. The game must move Outcomes for certain kinds of bets. Additionally, the CrapsTable‘s isValid() method will use the CrapsGame to both check the validity of individual bets as well as the entire set of bets created by a player. The first check allows or denies individual bets, something CrapsTable must do in collaboration with CrapsGame. For the second check, the CrapsTable assures that the total of the bets is within the table limits; something for which only the table has the information required.
Allowed Bets. The rule for allowed and non-allowed bets is relatively simple. When the game state has no point (also known as the come out roll), only Pass Line and Don’t Pass bets are allowed, all other bets are not allowed. When the point is on, all bets are allowed. We’ll have to add an isAllowed() to CrapsGame, which CrapsTable will use when the player attempts to place a bet.
Working Bets. The rule for working and non-working bets is also relatively simple. On the come out roll, all odds bets placed behind any of the six Come Point numbers are not working. This rule only applies to odds behind Come Point bets; odds behind Don’t Come bets are always working. We’ll have to add an isWorking() to CrapsGame, which CrapsTable will use when iterating through working bets.
The sequence of events that can lead to this condition is as follows. First, the player places a Come Line bet, the dice roll is 4, 5, 6, 8, 9 or 10, and establishes a point; the bet is moved to one of the six come points. Second, the player creates an additional odds bet placed behind this come point bet. Third, the main game point is a winner, changing the game state so the next roll is a come out roll. In this state, any additional odds behind a come point bet will be non-working bets on the come-out roll.
This kind of exceptional subtlety is one of the important reasons why object-oriented programming can be more successful than procedural programming. In this case, we can isolate this state-specific processing to the CrapsGame. We can also provide the interface to the CrapsTable that makes this responsibility explicit and easy to use.
CrapsGame is a preliminary design for the game of Craps. In addition to features required by the Throw, this version includes features required by the CrapsTable class.
Determines if the Outcome is allowed in the current state of the game. When the point is zero, it is the come out roll, and only Pass, Don’t Pass, Come and Don’t Come bets are allowed. Otherwise, all bets are allowed.
Determines if the Outcome is working in the current state of the game. When the point is zero, it is the come out roll, odds bets placed behind any of the six come point numbers are not working.
CrapsTable is a subclass of Table that has an association with a CrapsGame object. As a Table, it contains all the Bets created by the Player. It also has a betting limit, and the sum of all of a player’s bets must be less than or equal to this limit. We assume a single Player in the simulation.
The CrapsGame used to determine if a given bet is allowed or working in a particular game state.
Uses the superclass for initialization of the empty LinkedList of bets.
Validates this bet by checking with the CrapsGame to see if the bet is valid; it returns true if the bet is valid, false otherwise.
This uses the superclass to see if the sum of all bets is less than or equal to the table limit. If the individual bet outcomes are also valid, return true. Otherwise, return false.
There are three deliverables for this exercise.
A revision of the stub CrapsGame class to add methods for validating bets in different game states. In the stub, the point value of 0 means that only the “Pass Line” and “Don’t Pass Line” bets are valid, where a point value of non-zero means all bets are valid.
The CrapsTable subclass.
A class which performs a unit test of the CrapsTable class. The unit test should create a couple instances of Bet, and establish that these Bets are managed by the table correctly.
For testing purposes, it is easiest to have the test method simply set the the point variable in the CrapsGame instance to force a change in the game state. While public instance variables are considered by some to be a bad policy, they facilitate the creation of unit test classes.
In Throw Class, we roughed out a stub version of CrapsGame that could be used to test Throw. We extended that stub in Craps Table Class. In this chapter, we will revise the game to provide the complete process for Craps. This involves a number of features, and we will have a state hierarchy as well as the Game class itself.
In the process of completing the design for CrapsGame, we will uncover another subtlety of craps: winning bets and losing bets. Unlike Roulette, where a Bin contained winning Outcomes and all other Outcomes where losers, Craps includes winning Outcomes, losing Outcomes, and unresolved Outcomes. This will lead to some rework of previously created Craps classes.
We can see three necessary features to the CrapsGame:
Also, we will discover some additional design features to add to other classes.
A CrapsGame object cycles through the various steps of the Craps game; this sequence is shown in Game State. For statistical sampling purposes, we don’t want to process complete games, since they have an arbitrary number of dice throws, and each throw offers additional betting opportunities. Because of all the betting opportunities, we will gather data from each individual throw of the dice. Since the dice are thrown at a predictable average rate, the length of a session depends on the number of throws and has little to do with the number of games.
Since we will follow the State design pattern, we have three basic design decisions. First, we have to design the state class hierarchy to own responsibilities for the unique processing of the individual states. Second, we have to design an interface for the game state objects to interact with the overall CrapsGame. Additionally, we will need to keep an object in the CrapsGame which contains the current state. Each throw of the dice will update the state, and possibly resolve game bets. To restart the game, we can create a fresh object for the initial point-off state.
The following procedure provides the detailed algorithm for the game of Craps.
A Single Game of Craps
Point Off State. The first throw of the dice is made with no point. This game may be resolved in a single throw of the dice, no point will be established. If a point is established the game transitions to the Point On State.
Place Bets. The point is off; this is the come out roll. Notify the Player to create Bets. The real work of placing bets is delegated to the Player class. Only Pass and Don’t Pass bets will be allowed by the current game state.
Odds Bet Off? Optional, for some casinos only. For any odds bets behind a come point, interrogate the player to see if the bet is on or off.
Come-Out Roll. Get the next throw of the Dice, giving the winning Throw, t. The Throw contains the individual Outcomes that can be resolved on this throw.
Resolve Proposition Bets. For each Bet, b, placed on a one-roll proposition:
- Proposition Winner? If Bet b‘s Outcome is in the winning Throw, t, then notify the Player that Bet b was a winner and update the Player ‘s stake. Note that the odds paid for winning field bets and horn bets depend on the Throw.
- Proposition Loser? If Bet b‘s Outcome is not in the winning Throw, t, then notify the Player that Bet b was a loser. This allows the Player to update their betting amount for the next round.
Natural? If the throw is a 7 or 11, this game is an immediate winner. The game state must provide the Pass Line Outcome as a winner.
For each Bet, b :
- Come-Out Roll Natural Winner? If Bet b‘s Outcome is in the winning game state, then notify the Player that Bet b was a winner and update the Player ‘s stake. A Pass Line bet is a winner, and a Don’t Pass bet is a loser.
- Come-Out Roll Natural Loser? If Bet b‘s Outcome is not in the winning game state, then notify the Player that Bet b was a loser. This allows the Player to update the betting amount for the next round. A Pass Line bet is a loser, and a Don’t Pass bet is a winner.
Craps? If the throw is a 2, 3, or 12, this game is an immediate loser. The game state must provide the Don’t Pass Line Outcome as a winner; note that 12 is a push in this case, requiring special processing by the Bet or the Outcome: the bet amount is simply returned.
For each Bet, b:
- Come-Out Roll Craps Winner? If Bet b ‘s Outcome is in the winning game state and the bet is working, then notify the Player that Bet b was a winner and update the Player‘s stake. If the bet is not working, it is ignored.
- Come-Out Roll Craps Loser? If Bet b ‘s Outcome is not in the winning game state and the bet is working, then notify the Player that Bet b was a loser. If the bet is not working, it is ignored.
Point Established. If the throw is a 4, 5, 6, 8, 9 or 10, a point is established. The game state changes, to reflect the point being on. The Pass Line and Don’t Pass Line bets have a new Outcome assigned, based on the point.
Point On State. While the game remains unresolved, the following steps are performed. The game is resolved when the point is made or a natural is thrown.
Place Bets. Notify the player to place any additional bets. The game state will allow all bets.
Point Roll. Get the next throw of the dice.
Resolve Proposition Bets. Resolve any one-roll proposition bets. This is the procedure described above for iterating through all one-roll propositions. See Resolve Proposition Bets.
Natural? If the throw was 7, the game is a loser. Resolve all bets; the game state will show that all bets are active. The game state will include Don’t Pass and Don’t Come bets as winners, as will any of the six point bets created from Don’t Pass and Don’t Come Line bets. All other bets will lose, including all hardways bets.
This throw resolves the game, changing the game state. The point is off.
Point Made? If the throw was the main game point, the game is a winner. Resolve Pass Line and Don’t Pass Line bets, as well as the point and any odds behind the point.
Come Point and Don’t Come Point bets (and their odds) remain for the next game. A Come Line or Don’t Come Line bet will be moved to the appropriate Come Point.
This throw ends the game; changing the game state. The point is off; odds placed behind Come Line bets are not working for the come out roll.
Other Point Number? If the throw was any of the come point numbers, come bets on that point are winners. Resolve the point come bet and any odds behind the point. Also, any buy or lay bets will be resolved as if they were odds bets behind the point; recall that the buy and lay bets involved a commission, which was paid when the bet was created.
Hardways? For 4, 6, 8 and 10, resolve hardways bets. If the throw was made the hard way (both dice equal), a hardways bet on the thrown number is a winner. If the throw was made the easy way, a hardways bet on the thrown number is a loser. If the throw was a 7, all hardways bets are losers. Otherwise, the hardways bets remain unresolved.
We have identified some processing that is unique to each game state. Both states will have a unique list of allowed bets, a unique list of non-working bets, a unique list of throws that cause state change and resolve game bets, and throws that resolve hardways bets.
In the Craps Table (Craps Table Overview), we allocated some responsibilities to CrapsGame so that a CrapsTable could validate bets and determine which bets were working.
Our further design details have shown that the work varies by state. Therefore, the methods in CrapsGame will delegate the real work to each state’s methods. The current stub implementation checks the value of the point variable to determine the state. We’ll replace this with simply calling an appropriate method of the current state object.
State Responsibilities. Each CrapsGameState subclass, therefore, will have an isValid() method that implements the state-specific bet validation rules. In this case, a point-off state object only allows the two Pass Line bets: Pass Line, Don’t Pass Line. The point-on state allows all bets. Additionally, we’ve assigned to the CrapsTable has to determine if the total amount of all a player’s bets meets or exceeds the table limits.
Each subclass of CrapsGameState will override an isWorking() method with one that validates the state-specific rules for the working bets. In this case, a point-off state object will identify the the six odds bets placed behind the come point numbers (4, 5, 6, 8, 9 and 10) as non-working bets, and all other bets will be working bets. A point-on state object will simply identify all bets as working.
The subclasses of CrapsGameState will need methods with which to collaborate with a Throw object to update the state of the CrapsGame.
Changing Game State. We have identified two game states: point-off (also know as the come out roll) and point-on. We have also set aside four methods that the various Throw objects will use to change the game state. The interaction between CrapsGame, the four kinds of Throws and the two subclasses of CrapsGameStates works as follows:
There are 36 instances of Throw, one of which was selected at random to be the current throw of the dice.
The Game object calls the Throw object’s updateGame() method. Each of the subclasses of Throw have different implementations for this method.
The Throw object calls one of the Game‘s methods to change the state. There are four methods available: craps(), natural(), eleven(), and point(). Differen subclasses of Throw will call an appropriate method for the kind of throw.
The Game has a current state, embodied in a CrapsGameState object. The Game will delegate each of the four state change methods (craps(), natural(), eleven(), and point()) to the current CrapsGameState object. There are two subclasses, depending on the state of the point: point-on and point-off.
In parallel with Game, each CrapsGameState object has four state change methods (craps(), natural(), eleven(), and point()). Each state provides different implementations for these methods. In effect, the two states and four methods create a kind of table that enumerates all possible state change rules.
Complex? At first glance the indirection and delegation seems like a lot of overhead for a simple state change. When we consider the kinds of decision-making this embodies, however, we can see that this is an effective solution.
When one of the 36 available Throws has been chosen, the CrapsGame calls a single method to update the game state. Because the various subclasses of Throw are polymorphic, they all respond with unique, correct behavior.
Similarly, each of the subclasses of Throw simply uses one of four methods to update the CrapsGame, without having to discern the current state of the CrapsGame. We can consider CrapsGame as a kind of façade over the methods of the polymorphic CrapsGameState. Our objective is to do the decision-making once when the object is created; this makes all subsequent processing free of complex decision-making (i.e., simple) but indirect.
What’s important about this design is that there are no if-statements required to make it work. Instead, objects simply invoke methods.
The CrapsGame class also has the responsibility for matching the Outcomes in the current Throw with the Outcomes of the Bets on the CrapsTable.
In addition to matching Outcomes in the Throw, we also have to match the Outcomes of the current game state.
Finally, the CrapsGame class must also resolve hardways bets, which are casually tied to the current game state. We’ll look at each of these three resolution procedures in some detail before making any final design decisions.
Resolving Bets on Proposition Outcomes. We’ll need a bet resolution method that handles one-roll propositions. This is similar to the bet resolution in the Roulette game class. The current Throw contains a collection of Outcomes which are resolved as winners. All other Outcomes will be losers. While appropriate for the one-roll propositions, we’ll see that this doesn’t generalize for other kinds of bets.
Resolving Bets on Game Outcomes. The second, and most complex bet resolution method handles game outcomes. Bets on the game as a whole have three groups of Outcomes: winners, losers and unresolved.
This “unresolved” outcome is fundamentally different from Roulette bet resolution and proposition bet resolution.
Consider a Pass Line bet: in the point-off state, a roll of 7 or 11 makes this bet a winner, a roll of 2, 3 or 12 makes this bet a loser, all other numbers leave this bet unresolved. After a point is established, this Pass Line bet has the following resolutions: a roll of 7 makes this bet a loser, rolling the point makes this bet is a wiunner, all other numbers leave this bet unresolved.
In addition to this three-way decision, we have the additional subtlety of Don’t Pass Line bets that can lead to a fourth resolution: a push when the throw is 12 on a come out roll. We don’t want to ignore this detail because it changes the odds by almost 3%.
Hardways Bets. We have several choices for implementation of this multi-way decision. This is an overview, we’ll dive into details below.
In the casino, the Come (and Don’t Come) Line bets start on the given line. If a come point is established, the come line bet is moved to a numbered box. When you add behind the line odds bets, you place the chips directly on the numbered box for the Come Point number.
This procedure is different from the Pass (and Don’t Pass) Line bet. The bet is is placed on the line. If a point is established, a large white “On” token shows the numbered box where, in effect, the behind the line odds chips belong.
Note that the net effect of both bets is identical. The pass line and behind-the-line odds bets have a payout that depends on the “On” token. The come line bets are moved and odds a place in a box on which the payout depends.
Moving Bets. One of the things the CrapsGame does is change the Outcome of the Come and Don’t Come Line bets. If a Come or Don’t Come Line bet is placed and the throw is a point number (4, 5, 6, 8, 9, or 10), the bet is not resolved on the first throw; it is moved to one of the six point number Outcomes.
When designing the Bet class, in the Craps Bet Bet Overview, we recognized the need to change the Outcome from a generic “Pass Line Odds” to a specific point with specific odds of 2:1, 3:2 or 6:5.
We’ll develop a moveToThrow() method that accepts a Bet and the current Throw and move that bet to an appropriate new Outcome.
In addition to moving bets, we also need to create bets based on the currently established point. We also need to deactivate bets based on the established point.
As an example, the Pass Line Odds and Don’t Pass Odds are created after the point is established. Since the point is already known, creating these bets is best done by adding a CrapsGame.pointOutcome() method that returns an Outcome based on the current point. This allows the CrapsPlayer to get the necessary Outcome object, create a Bet and give that Bet to the CrapsTable.
Bet resolution in Craps is more complex than simply paying winners and collecting all other bets as losers. In craps, we have winners, losers and unresolved bets. Further, some bets have a resolution in which only the original price of the bet is returned. This is a kind of 1:1 odds special case.
This leaves us with a design decision on how best to handle the wide variety of bets that will be on the CrapsTable.
Problem. What’s the best way to retain a collection of Outcomes that are resolved as a mixture of winning, losing, unresolved and pushes.
Note that if we elect to introduce a more complex multi-way bet resolution, we have to decide if we should reimplement the bet resolution in Roulette. Using very different bet resolution algorithms for Craps and Roulette would increase the cost of maintenance and adaptation. While a uniform approach is beneficial, it would involve some rework of the Roulette game to make use of a more sophisticated design.
Alternatives We’ll look at three altenative responsibility assignments in some depth.
Winning and Losing Collections. We could expand the Throw to keep separate collections of winners and losers. We could expand the CrapsGameState to detail the winning and losing Outcomes for each state. All other Outcomes would be left unresolved.
This is a minor revision to Dice and Throw to properly create the two groups of Outcomes. Consequently ThrowBuilder will have to be expanded to identify losing Outcomes in addition to the existing winning Outcomes.
This will require the CrapsGame to make two passes through the bets. It must match all active Bets on the CrapsTable against the winning Outcomes in the current CrapsGameState; the matches are paid a winning amount and removed. It must also match match all active Bets on the CrapsTable against the losing Outcomes in the current CrapsGameState; these are removed as losers.
Winning and Losing Codes, Evaluated by CrapsGame. We could enumerate three code values that represent actions to take: these actions are “win”, “lose”, and “unresolved”. The class Game and each subclass of GameState would have a resolution method that examines a Bet and returns the appropriate code value.
This is a minor revision to Dice and Throw to properly associate a special code with each Outcome. Consequently ThrowBuilder will have to be expanded to identify losing Outcomes in addition to the existing winning Outcomes.
Each GameState would also need to respond with appropriate codes.
This will require the CrapsGame to make one pass through the Bets, passing each each bet to the GameState resolution method. Based on the code returned, the CrapsGame would then have an if-statement to decide to provide bets to the Player.win() or Player.lose() method.
Wining and Losing Commands. We could define a hierarchy of three subclasses. Each subclass implements winning, losing or leaving a bet unresolved.
This is a minor revision to Dice and Throw to properly associate a special object with each Outcome. We would create single objects of each resolution subclass. The ThrowBuilder will have to be expanded to associate the loser Command or winner command with each Outcome. Further, the unresolved Command would have to be associated with all Outcomes that are not resolved by the Throw or GameState.
This will require the CrapsGame to make one pass through the Bets, using the associated resolution object. The resolution object would then handle winning, losing and leaving the bet unresolved.
Before making a determination, we’ll examine the remaining bet resolution issue to see if a single approach can cover single-roll, game and hardways outcomes.
Resolving Bets on Hardways Outcomes. In addition to methods to resolve one roll and game bets, we have to resolve the hardways bets. Hardways bets are similar to game bets. For Throws of 4, 6, 8 or 10 there will be one of three outcomes:
Since this parallels the game rules, but applies to a Throw, it leads us to consider the design of Throw to be parallel to the design of CrapsGame. We can use either a collection of losing Outcomes in addition to the collection of winning Outcomes, or create a multi-way discrimination method, or have the Throw call appropriate methods of CrapsTable to resolve the bet.
Solution. A reasonably flexible design for Bet resolution that works for all three kinds of bet resolutions is to have Throw and CrapsGameState call specific bet resolution methods in CrapsPlayer.
This unifies one-roll, game and hardways bets into a single mechanism. It requires us to provide methods for win, lose and push in the CrapsPlayer. We can slightly simplify this to treat a push as a kind of win that returns the bet amount.
Consequences. The CrapsGame will iterate through the the active Bets. Each Bet and the Player will be provided to the current Throw for resolving one-roll and hardways bets. Each Bet and the Player will also be provided to the :class:`CrapsGameState to resolve the winning and losing game bets.
We can further simplify this if each Bet carries a reference to the owning Player. In this way, the Bet has all the information necessary to notify the Player.
In the long run, this reflects the reality of craps table where the table operators assure that each bet has an owning player.
We will have to rework our design for Throw to have both a one-roll resolution method and a hardways resolution method. Each of these methods will accept a single active Bet. Each resolution method could use a Set of winner Outcomes and a Set of loser Outcomes to attempt to resolve the Bet.
We will also need to rework our design for Dice to correctly set both winners and losers for both one-roll and harways bets when constructing the 36 individual Throw instances.
We can use the following expanded algorithm for building the Dice. This is a revision to Throw Builder Overview to include lists of losing bets as well as winning bets.
Building Dice With Winning and Losing Outcomes
For All Faces Of Die 1. For all , such that
:
For All Faces Of A Die 2. For
, such that
:
Sum the Dice. Compute the sum,
.
Craps? If s is in 2, 3, and 12, we create a CrapsThrow instance. The winning bets include one of the 2, 3 or 12 number Outcome, plus all craps, horn and field Outcomes. The losing bets include the other number Outcomes. This throw does not resolve hardways bets.
Point? For s in 4, 5, 6, 8, 9, and 10 we will create a PointThrow instance.
Field? For s in 4, 9 and 10 we include the field Outcome as a winner. Otherwise the field Outcome is a loser. Note that 2, 3, and 12 Field outcomes where handled above under Craps.
Losing Propositions. Other one-roll Outcomes, including 2, 3, 7, 11, 12, Horn and Any Craps are all losers for this Throw.
Natural? If s is 7, we create a NaturalThrow instance. This will also include a 7 Outcome as a winner. It will have numbers 2, 3, 11, 12, Horn, Field and Any Craps Outcomes as losers for this Throw. Also, all four hardways are losers for this throw.
Eleven? If s is 11, we create an ElevenThrow instance. This will include 11, Horn and Field Outcomes as winners. It will have numbers 2, 3, 7, 12 and Any Craps Outcomes as losers for this Throw. There is no hardways resolution.
Craps Player Class Hierarchy. We have not designed the actual CrapsPlayer. This is really a complete tree of classes, each of which provides a different betting strategy. We will defer this design work until later. For the purposes of making the CrapsGame work, we can develop our unit tests with a kind of stub for CrapsPlayer which simply places a single Pass Line Bet. In several future exercises, we’ll revisit this design to make more sophisticated players.
See Some Betting Strategies for a further discussion on an additional player decision offered by some variant games. Our design can be expanded to cover this. We’ll leave this as an exercise for the more advanced student. This involves a level of collaboration between CrapsPlayer and CrapsGame that is over the top for this part. We’ll address this kind of very rich interaction in Blackjack.
Changing the Throw to include both winning and losing Outcomes is an important change. Once we have fixed the Throw class, we can update the ThrowBuilder class to do a correct initialization using both winners and losers. Note that we have encapsulated this information so that there is no change to Dice.
We will also update Bet to carry a reference to the Player to make it easier to post winning and losing information directly to the player object.
We will need to create a stub CrapsPlayer for testing purposes.
We will also need to create our CrapsGameState class hierarchy to represent the two states of the game.
Once the preliminary work is complete, we can then transform the CrapsGame we started in CrapsGame Stub into a final version of CrapsGame. It will collaborate with a CrapsPlayer and maintain a correct CrapsGameState. It will be able to get a random Throw and resolve Bets.
Throw is the superclass for the various throws of the dice. A Throw identifies two sets of Outcomes: immediate winners and immediate losers. Each subclass is a different grouping of the numbers, based on the state-change rules for Craps.
A set of of one-roll Outcomes that win with this throw.
A set of one-roll Outcomes that lose with this throw.
A set of hardways Outcomes that win with this throw. Not all throws resolve hardways bets, so this and the loseHardway Set may both be empty.
A set of hardways Outcomes that lose with this throw. Not all throws resolve hardways bets, so this and the winHardway Set may both be empty.
One of the two die values, from 1 to 6.
The other of the two die values, from 1 to 6.
Creates this throw, and associates the two given Set s of Outcomes that are winning one-roll propositions and losing one roll propositions.
Adds outcomes to the one-roll winners and one-roll losers Sets.
Adds outcomes to the hardways winners and hardways losers Sets.
Returns true if d1 is equal to d2.
This helps determine if hardways bets have been won or lost.
Calls one of the Game state change methods: craps(), natural(), eleven(), point(). This may change the game state and resolve bets.
This should return a String representation of the dice. A form that looks like 1,2 works nicely.
ThrowBuilder initializes the 36 Throws, each initialized with the appropriate Outcomes. Subclasses can override this to reflect different casino-specific rules for odds on Field bets.
Creates the 8 one-roll Outcome instances (2, 3, 7, 11, 12, Field, Horn, Any Craps), as well as the 8 hardways Outcome instances (easy 4, hard 4, easy 6, hard 6, easy 8, hard 8, easy 10, hard 10).
It then creates each of the 36 Throws, each of which has the appropriate combination of Outcomes for one-roll and hardways. The various Throws are assigned to dice.
Bet associates an amount, an Outcome and a Player. The Game may move a Bet to a different Outcome to reflect a change in the odds used to resolve the Bet.
This replaces the existing constructor and adds an optional parameter.
Initialize the instance variables of this bet. This works by saving the additional player information, then using the existing Bet.Bet() constructor.
CrapsPlayer constructs a Bet based on the Outcome named "Pass Line". This is a very persistent player.
This is the Outcome on which this player focuses their betting. It will be an instance of the "Pass Line" Outcome, with 1:1 odds.
This is the current Pass Line Bet.
Initially this is None. Each time the bet is resolved, this is reset to None.
This assures that only one bet is working at a time.
That Table which collects all bets.
CrapsGameState defines the state-specific behavior of a Craps game. Individual subclasses provide methods used by CrapsTable to validate bets and determine the active bets. Subclasses provide state-specific methods used by a Throw to possibly change the state and resolve bets.
Saves the overall CrapsGame object to which this state applies.
Returns true if this is a valid outcome for creating bets in the current game state.
Each subclass provides a unique definition of valid bets for their game state.
Returns true if this is a working outcome for existing bets in the current game state.
Each subclass provides a unique definition of active bets for their game state.
Return an appropriate state when a 2, 3 or 12 is rolled. It then resolves any game bets.
Each subclass provides a unique definition of what new state and what bet resolution happens.
Returns an appropriate state when a 7 is rolled. It then resolves any game bets.
Each subclass provides a unique definition of what new state and what bet resolution happens.
Returns an appropriate state when an 11 is rolled. It then resolves any game bets.
Each subclass provides a unique definition of what new state and what bet resolution happens.
Returns an appropriate state when the given point number is rolled. It then resolves any game bets.
Each subclass provides a unique definition of what new state and what bet resolution happens.
Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t Pass Odds bets. This delegates the real work to the current CrapsGameState object.
Moves a Come Line or Don’t Come Line bet to a new Outcome based on the current throw. If the value of theThrow is 4, 5, 6, 8, 9 or 10, this delegates the move to the current CrapsGameState object. For values of 4 and 10, the odds are 2:1. For values of 5 and 9, the odds are 3:2. For values of 6 and 8, the odds are 6:5. For other values of theThrow, this method does nothing.
In the superclass, this doesn’t do anything. Each subclass, however, should display something useful.
CrapsGamePointOff defines the behavior of the Craps game when the point is off. It defines the allowed bets and the active bets. It provides methods used by a Throw to change the state and resolve bets.
All four of the game update methods (craps, natural, eleven and point) use the same basic algorithm. The method will get the CrapsTable from theGame. From the CrapsTable, the method gets the Iterator over the Bets. It can then match each Bet against the various Outcomes which win and lose, and resolve the bets.
Uses the superclass constructor to save the overall CrapsGame object.
When the point is off, a roll of 2, 3 or 12 means the game is an immediate loser. The Pass Line Outcome is a loset. If the Throw value is 12, a Don’t Pass Line Outcome is a push, otherwise the Don’t Pass Line Outcome is a winner. The next state is the same as this state, and the method should return this.
When the point is off, a new point is established. This method should return a new instance of CrapsGamePointOn created with the given Throw‘s value. Note that any Come Point bets or Don’t Come Point bets that may be on this point are pushed to player: they can’t be legal bets in the next game state.
Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t Pass Odds bets. This delegates the real work to the current CrapsGameState object. Since no point has been established, this returns null.
The point-off state should simply report that the point is off, or that this is the come out roll.
CrapsGamePointOn defines the behavior of the Craps game when the point is on. It defines the allowed bets and the active bets. It provides methods used by a Throw to change the state and resolve bets.
The point value.
Saves the given point value. Uses the superclass constructor to save the overall CrapsGame object.
All Outcomes are working.
When the point is on, 7 means the game is a loss. Pass Line Outcomes lose, as do the pass-line odds Outcome s based on the point. Don’t Pass Line Outcomes win, as do all Don’t Pass odds Outcome based on the point. The Come Line Outcome is a winner, the Don’t Come Line Outcome is a loser. However, all Come Point number Outcomes and Come Point Number odds Outcome are all losers. All Don’t Come Point number Outcomes and Don’t Come Point odds Outcomes are all winners. The next state is a new instance of the CrapsGamePointOff state.
Also note that the Throw of 7 also resolved all hardways bets. A consequence of this is that all Bets on the CrapsTable are resolved.
When the point is on and the value of throw doesn’t match point, then the various Come Line bets can be resolved. Come Point Outcome s for this number (and their odds) are winners. Don’t Come Line Outcome s for this number (and their odds) are losers. Other Come Point number and Don’t Come Point numbers remain, unresolved. Any Come Line bets are moved to the Come Point number Outcomes. For example, a throw of 6 moves the Outcome of the Come Line Bet to Come Point 6. Don’t Come Line bets are moved to be Don’t Come number Outcomes. The method should return this.
When the point is on and the value of throw matches point, the game is a winner. Pass Line Outcomes are all winners, as are the behind the line odds Outcomes. Don’t Pass line Outcomes are all losers, as are the Don’t Pass Odds Outcomes. Come Line bets are moved to thee Come Point number Outcomes. Don’t Come Line bets are moved to be Don’t Come number Outcomes. The next state is a new instance of the CrapsGamePointOff state.
Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t Pass Odds bets. This delegates the real work to the current CrapsGameState object. For points of 4 and 10, the Outcome odds are 2:1. For points of 5 and 9, the odds are 3:2. For points of 6 and 8, the odds are 6:5.
The point-off state should simply report that the point is off, or that this is the come out roll.
CrapsGame manages the sequence of actions that defines the game of Craps. This includes notifying the Player to place bets, throwing the Dice and resolving the Bet s actually present on the Table.
Note that a single cycle of play is one throw of the dice, not a complete craps game. The state of the game may or may not change.
Contains the dice that returns a randomly selected Throw with winning and losing Outcomes. This is an instance of Dice.
The CrapsTable contains the bets placed by the player.
The CrapsPlayer who places bets on the CrapsTable.
We based this constructor on an design that allows any of these objects to be replaced. This is the Strategy design pattern. Each of these objects is a replaceable strategy, and can be changed by the client that uses this game.
Additionally, we specifically do not include the Player instance in the constructor. The Game exists independently of any particular Player, and we defer binding the Player and Game until we are gathering statistical samples.
This will execute a single cycle of play with a given Player.
- It will call thePlayer placeBets() to get bets. It will validate the bets, both individually, based on the game state, and collectively to see that the table limits are met.
- It will call theDice next() to get the next winning Throw.
- It will use the Throw‘s updateGame() to advance the game state.
- It will then call theTable bets() to get an Iterator ; stepping through this Iterator returns the individual Bet objects.
Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t Pass Odds bets. This delegates the real work to the current CrapsGameState object.
Moves a Come Line or Don’t Come Line bet to a new Outcome based on the current throw. This delegates the move to the current CrapsGameState object.
This method should – just as a precaution – assert that the value of theThrow is 4, 5, 6, 8, 9 or 10. These point values indicate that a Line bet can be moved. For other values of theThrow, this method should raise an exception, since there’s no reason for attempting to move a line bet on anything but a point throw.
This will reset the game by setting the state to a new instance of GamePointOff. It will also tell the table to clear all bets.
There are over a dozen deliverables for this exercise. This includes significant rework for Throw and Dice. It also includes development of a stub CrapsPlayer, the CrapsGameState hierarchy and the first version of the CrapsGame. We will break the deliverables down into two groups.
Rework. The first group of deliverables includes the rework for Throw and Dice, and all of the associated unit testing.
New Development. The second group of deliverables includes development of a stub CrapsPlayer, the CrapsGameState hierarchy and the first version of the CrapsGame. This also includes significant unit testing.
We could, with some care, refactor our design to create some common superclasses between Roulette and Craps to extract features of Throw so they can be shared by Throw and Bin. Similarly, there may be more common features between RouletteGame and CrapsGame. We’ll leave that as an exercise for more advanced students.
Some casinos may give the player an option to declare the odds bet behind a come point as “on” or “off”. This is should not be particularly complex to implement. There are a number of simple changes required if we want to add this interaction between CrapsPlayer and CrapsGame.
The variations on Player, all of which reflect different betting strategies, is the heart of this application. In Roulette Game Class, we roughed out a stub class for Player, and refined it in Player Class. We will further refine this definition of Player for use in Craps.
We have now built enough infrastructure that we can begin to add a variety of players and see how their betting strategies work. Each player is betting algorithm that we will evaluate by looking at the player’s stake to see how much they win, and when they stop playing because they’ve run out of time or gone broke.
The Player has the responsibility to create bets and manage the amount of their stake. To create bets, the player must create legal bets from known Outcome s and stay within table limits. To manage their stake, the player must deduct the price of a bet when it is created, accept winnings or pushes, report on the current value of the stake, and leave the table when they are out of money.
We have an interface that was roughed out as part of the design of CrapsGame and CrapsTable. In designing CrapsGame, we put a placeBets() method in CrapsPlayer to place all bets. We expected the CrapsPlayer to create Bet s and use the placeBet() method of CrapsTable class to save all of the individual Bets.
In an earlier exercise, we built a stub version of CrapsPlayer in order to test Game. See CrapsPlayer Class Stub. When we finish creating the final superclass, CrapsPlayer, we will also revise our CrapsPlayerStub to be more complete, and rerun our unit tests to be sure that our more expanded design still handles the basic test cases correctly.
Our objective is to have a new abstract class, CrapsPlayer, with a concrete subclass that follows the Martingale system, using simple Pass Line bets and behind the line odds bets.
We’ll defer some of the design required to collect detailed measurements for statistical analysis. In this first release, we’ll simply place bets. Most of the Simulator class that we built for Roulette should be applicable to Craps without significant modification.
Some Basic Features. Our basic CrapsPlayer will place a Pass Line bet and a Pass Line Odds bet. This requires the player to interact with the CrapsTable or the CrapsGame to place bets legally. On a come out roll, only the Pass Line will be legal. After that, a single Pass Line Odds bet can be placed. This leads to three betting rules:
Beyond simply placing Pass Line and Pass Line Odds bets, we can use a Martingale or a Cancellation betting system to increase our bet on each loss, and decrease our betting amount on a win. Since we have two different bets in play – a single bet created on the come out roll, a second odds bet if possible – the simple Martingale system doesn’t work well. In some casinos, the behind the line odds bet can be double the pass line bet, or even 10 times the pass line bet, giving us some complex betting strategies. For example, we could apply the Martingale system only to the odds bet, leaving the pass line bet at the table minimum. We’ll set this complexity aside for the moment, build a simple player first.
CrapsPlayer is a subclass of Player and places bets in Craps. This an abstract class, with no actual body for the Player.placeBets() method. However, this class does implement the basic win() and lose() methods used by all subclasses.
Since this is a subclass of the basic Roulette player, we inherit several useful features. Most of the features of Player are repeated here for reference purposes only.
The player’s current stake. Initialized to the player’s starting budget.
The number of rounds left to play. Initialized by the overall simulation control to the maximum number of rounds to play. In Roulette, this is spins. In Craps, this is the number of throws of the dice, which may be a large number of quick games or a small number of long-running games. In Craps, this is the number of cards played, which may be large number of hands or small number of multi-card hands.
The CrapsTable used to place individual Bets.
Returns true while the player is still active. A player with a stake of zero will be inactive. Because of the indefinite duration of a craps game, a player will only become inactive after their roundsToGo is zero and they have no more active bets. This method, then, must check the CrapsTable to see when all the bets are fully resolved. Additionally, the player’s betting rules should stop placing new bets when the roundsToGo is zero.
Updates the CrapsTable with the various Bet s.
When designing the CrapsTable, we decided that we needed to deduct the price of the bet from the stake when the bet is created. See the Roulette Table Roulette Table Overview for more information on the timing of this deduction, and the Craps Bet Bet Overview for more information on the price of a bet.
CrapsPlayerPass is a CrapsPlayer who places a Pass Line bet in Craps.
If no Pass Line bet is present, this will update the Table with a bet on the Pass Line at the base bet amount.
Otherwise, this method does not place an additional bet.
CrapsMartingale is a CrapsPlayer who places bets in Craps. This player doubles their Pass Line Odds bet on every loss and resets their Pass Line Odds bet to a base amount on each win.
The number of losses. This is the number of times to double the pass line odds bet.
The the bet multiplier, based on the number of losses. This starts at 1, and is reset to 1 on each win. It is doubled in each loss. This is always set so that
.
If no Pass Line bet is present, this will update the Table with a bet on the Pass Line at the base bet amount.
If no Pass Line Odds bet is present, this will update the Table with an Pass Line Odds bet. The amount is the base amount times the betMultiple.
Otherwise, this method does not place an additional bet.
Uses the superclass win() method to update the stake with an amount won. This method then resets lossCount to zero, and resets betMultiple to 1.
Increments lossCount by 1 and doubles betMultiple.
There are six deliverables for this exercise.
We have taken an intentionally casual approach to the names chosen for our various classes and the relationships among those classes. At this point, we have a considerable amount of functionality, but it doesn’t reflect our overall purpose, instead it reflects the history of its evolution. This chapter will review the design from Craps and more cleanly separate it from the design for Roulette.
We expect two benefits from the rework in this chapter. First, we expect the design to become “simpler” in the sense that Craps is separated from Roulette, and this will give us room to insert Blackjack into the structure with less disruption in the future. Second, and more important, the class names will more precisely reflect the purpose of the class, making it easier to understand the system, which means it will be easier to debug, maintain and adapt.
We can now use our application to generate some more usable results. We would like the Simulator class to be able to use our Craps game, dice, table and players in the same way that we use our Roulette game, wheel, table and players. The idea would be to give the Simulator‘s constructor Craps-related objects instead of Roulette-related objects and have everything else work normally. Since we have generally made Craps a subclass of Roulette, we are reasonably confident that this should work.
Our Simulator‘s constructor requires a Game and a Player. Since CrapsGame is a subclass of Game and CrapsPlayer is a subclass of Player, we can construct an instance of Simulator.
Looking at this, however, we find a serious problem with the names of our classes and their relationships. When we designed Roulette, we used generic names like Table, Game and Player unwisely. Further, there’s no reason for Craps to be dependent on Roulette. We would like them to be siblings, and both children of some abstract game simulation.
Soapbox On Refactoring
We feel very strongly that our :design by refactoring helps beginning designers produce a more functional design more quickly than the alternative approach, which is to attempt to define the game abstraction and player abstraction first and then specialize the various games. When defining an abstract superclass, some designers will build a quick and dirty design for some of the subclasses, and use this to establish the features that belong in the superclass. We find that a more successful superclass design comes from have more than one working subclasses and a clear understanding of the kinds of extensions that are likely to emerge from the problem domain.
While our approach of refactoring working code seems expensive, the total effort is often smaller. The largest impediment we’ve seen seems to stem from the project-management mythology that once something passes unit tests it is done for ever and can be checked off as completed. We feel that it is very important to recognized that passing a unit test is only one of many milestones. Passing an integration test, and passing the sanity test are better indicators of done-ness.
The sanity test is the designer’s ability to explain the class structure to someone new to the project. We feel that class and package names must make obvious sense in the current project context. We find that any explanation of a class name that involves the words “historically”, or “originally” means that there are more serious design deficiencies that need to be repaired.
We now know enough to factor out the common features of Game and CrapsGame to create three new classes from these two. However, to find the common features of these two classes, we’ll see that we have to unify Dice and Wheel, as well as Table and CrapsTable and Player and CrapsPlayer.
Looking into Dice and Wheel, we see that we’ll have to tackle Bin and Throw first. Unifying Bin and Throw is covered in Design Heavy. If the necessary design for RandomEvent is already in place, skip to Unifying Dice and Wheel. After that, we can refactor the other classes.
We need to create a common superclass for Bin and Throw, so that we can then create some commonality between Dice and Wheel. This unification will make the Vector of results and the next() method identical.
The first step, then, is to identify what are the common features of Bin and Throw. The relatively simple Bin and the more complex Throw can be unified in one of two ways.
The first design approach is something we call the Swiss Army Knife design pattern: create a structure that has every possible feature, and then ignore the features you don’t need. This creates a distasteful disconnect between the use of Bin and the declaration of Bin: we only use a the Set of winning Outcomes, but the object has the losing Set that isn’t used by anything else in the Roulette game.
We also note that a key feature of OO languages is inheritance, which adds features to a superclass. The Swiss Army Knife design approach, however, works by subtracting features. Since the languages we’re using don’t really support class definition by subtraction, we try to ignore the features, creating a distance between the OO language and our design intent.
Our first decision, then, is to refactor Throw and Bin to make them instances of a common superclass, which we’ll call RandomEvent. See the Craps Throw Throw Overview for our initial thoughts on this, echoed in the Soapbox on Refectoring sidebar.
The responsibilities for RandomEvent are essentially the same as Bin. We can then make Bin a subclass that doesn’t add any new features, and Throw a subclass that adds a number of features, including the value of the two dice and the Set of losing Outcome s. Note that we have made Throw and Bin siblings of a common superclass. See Soapbox on Architecture for more information on our preference for this kind of design.
When we take a step back from Dice and Wheel, we see that they are nearly identical. They differ in the construction of the Bins or Throws, but little else. Looking forward, the deck of cards used for Blackjack is completely different. Dice and a Roulette wheel use :phrase:`selection with replacement` : an event is picked at random from a pool, and is eligible to be picked again any number of timers. Cards, on the other hand, are selection without replacement: the cards form a sequence of events of a defined length that is randomized by a shuffle. If we have a 5-deck shoe, we can only see five kings of spades during the game, and we only have 260 cards. However, we can roll an indefinite number of 7’s on the dice.
We note that there is a superficial similarity between the rather complex BinBuilder methods and the simpler method in ThrowBuilder. However, there is no compelling reason for polymorphism between these two classes. We don’t have to factor these into a common class hierarchy.
Our second design decision, then, is to create a RandomEventFactory out of Dice and Wheel . This refactoring will make the Vector of results and the next() method part of the superclass. Each subclass provides the initialization method that constructs the Vector of RandomEvents.
When we move on to tackle cards, we’ll have to create a subclass that uses a different definition of next() and adds shuffle(). This will allow a deck of cards to do selection without replacement.
We see few differences between Table and CrapsTable. When we designed CrapsTable we had to add a relationship between CrapsTable and CrapsGame so that a table could ask the game to validate individual Bets based on the state of the game.
If we elevate the CrapsTable to be the superclass, we eliminate a need to have separate classes for Craps and Roulette. We are dangerously close to embracing a Swiss Army Knife design. The distinction may appear to be merely a matter of degree: one or two features can be pushed up to the superclass and then ignored in a subclass. However, in this case, both Craps and Roulette will use the Game to validate bets: the feature will not be ignored. It happens that the Roulette Game will permit all bets, but we have made that the Game’s responsibility, not the Table’s. Indeed, viewed this way, the Roulette version of Table implicitly took a responsibility away from the Roulette Game because the Table failed to collaborate with the Game for any game-state specific rules. At the time, we overlooked this nuance because we knew that Roulette was stateless and we were comfortable making that assumption part of the design.
Our third design decision is to merge Table and CrapsTable into a new Table class and use this for both games. This will simplify the various Game classes by using a single class of Table for both games.
Before we can finally refactor Game, we need to be sure that we have sorted out a proper relationship between our various players. In this case, we have a large hierarchy, which will we hope to make far larger as we explore different betting alternatives. Indeed, the central feature of this simulation is to expand the hierarchy of players as needed to explore betting strategies. Therefore, time spent organizing the Player hierarchy is time well spent.
We’d like to have the following hierarchy.
Looking forward to Blackjack, see see that there is much richer player interaction, because there are player decisions that are not related to betting. This class hierarchy seems to enable that kind of expansion.
We note that there are two “dimensions” to this class hierarchy. One dimension is the game (Craps or Roulette), the other dimension is a betting system (Matingale, 1326, Cancellation, Fibonacci). For Blackjack, there is also a playing system in addition to a betting system. Sometimes this multi-dimensionsal aspect of a class hierarchy indicates that we could be using multiple inheritance. In the case of Python, we have multiple inheritance in the language, and we can pursue this directly. Java, however, demands the Strategy design pattern to add a flexible betting strategy object to the basic interface for playing the game.
In Roulette, where we are placing a single bet, there is almost no distinction between game interface and the betting system. However, in Craps, we made a distinction in our Martingale player by separating their Pass Line bet (where the payout doesn’t match the actual odds very well) from their Pass Line Odds bet (where the payout does match the odds). This means that our Martingale Craps player really has two betting strategies objects: a flat bet strategy for Pass Line and a Martingale Bet strategy for the Pass Line Odds.
If we separate the player and the betting system, we could easily mix and match betting systems, playing systems and game rules. In the case of Craps, where we can have many working bets (Pass Line, Come Point Bets, Hardways Bets, plus Propostions), each player would have a mixture of betting strategies used for their unique mixture of working bets. This leads to an interesting issue in the composition of such a complex object. For the current exercise, however, we won’t formally separate the player from the various betting strategies.
Rather than fully separate the player’s game interface and betting system interface, we can simply adjust the class hierarchy and the class names to those shown above. We need to make the superclass, Player independent of any game. We can do this by extracting anything Roulette-specific from the original Player class and renaming our Roulette-focused Passenger57 to be RoulettePlayer, and fix all the Roulette player subclasses to inherit from RoulettePlayer.
We will encounter one design difficulty when doing this. That is the dependency from the various Player1326State classes on a field of Player1326. Currently, we will simply be renaming Player1326 to Roulette1326. However, as we go forward, we will see how this small issue will become a larger problem. In Python, we can easily overlook this, as described in Python and Interface Design.
Python and Interface Design
Because of the run-time binding done in Python, there is no potential problem in having the Player1326State classes depend on a field of Player1326 . Since Java checks the validity of these references at compile time, we are forced to provide proper declarations for the outcome field in Player1326 . In the event of change, this declaration may no longer be valid, alterting us to a dependency. In Python, however, the attributes of an object are kept in a dictionary, which is created dynamically during execution, making it difficult to assure that one class properly includes the attributes that will be required by a collaborating class. We don’t discover problems in Python until the application crashes at run time because of a missing attribute.
Some Python programmers will bypass the simple access methods and check an object’s internal __dict__ for the presence of the expected outcome attribute. We don’t condone this: the application should crash because of design changes, not work around them.
While the dynamic nature of Python attributes has some beneficial effects, we find it can be easily abused. We consider references to the __dict__ object to raise serious quality concerns, and discourage its use by new OO designers.
Once we have a common RandomEventFactory, a common Table, and a common Player, we can separate Game from RouletteGame and CrapsGame to create three new classes.
While this appears to be a tremendous amount of rework, it reflects lessons learned incrementally through the previous chapters of exercises. This refactoring is based on considerations that would have been challenging, perhaps impossible, to explain from the outset. Since we have working unit tests for each class, this refactoring is easily validated by rerunning the existing suite of tests.
RandomEventFactory is a superclass for Dice, Wheel, Cards, and other casino random-event generators.
The random number generator, a subclass of random.Random.
Generates the next random number, used to select a RandomEvent from the bins collection.
The most recently returned RandomEvent.
Saves the given Random Number Generator. Calls the initialize() method to create the vector of results.
Create a collection of RandomEvent objects with the pool of possible results.
Each subclass must provide a unique implementation for this.
Return the next RandomEvent.
Each subclass must provide a unique implementation for this.
Wheel is a subclass of RandomEventFactory that contains the 38 individual Bins on a Roulette wheel. As a RandomEventFactory, it contains a random number generator and can select a Bin at random, simulating a spin of the Roulette wheel.
Creates a new wheel. Create a sequence of the Wheel.events with with 38 empty Bins.
Use the superclass to save the given random number generator instance and invoke initialize().
Creates the events vector with the pool of possible events. This will create an instance of BinBuilder, bb, and delegate the construction to the buildBins() method of the bb object.
Dice is a subclass of RandomEventFactory that contains the 36 individual throws of two dice. As a RandomEventFactory, it contains a random number generator and can select a Throw at random, simulating a throw of the Craps dice.
Create an empty set of Dice.events. Use the superclass to save the given random number generator instance and invoke initialize().
Adds the given Outcome to the Throw with the given NumberPair. This allows us to create a collection of several one-roll Outcomes. For example, a throw of 3 includes four one-roll Outcomes: Field, 3, any Craps, and Horn.
Table contains all the Bets created by the Player. A table has an association with a Game, which is responsible for validating individual bets. A table also has betting limits, and the sum of all of a player’s bets must be within this limits.
This is the table lower limit. The sum of a Player‘s bets must be greater than or equal to this limit.
This is the table upper limit. The sum of a Player‘s bets must be less than or equal to this limit.
This is a LinkedList of the Bets currently active. These will result in either wins or losses to the Player. :noindex:
The Game used to determine if a given bet is allowed in a particular game state.
Creates an empty LinkedList of bets.
Saves the given Game to be used to validate bets.
Validates this bet. The first test checks the Game to see if the bet is valid.
Validates the sum of all bets within the table limits. Returns false if the minimum is not met or the maximum is exceeded.
Adds this bet to the list of working bets. If the sum of all bets is greater than the table limit, then an exception should be thrown (Java) or raised (Python). This is a rare circumstance, and indicates a bug in the Player more than anything else.
Returns an Iterator over the list of bets. This gives us the freedom to change the representation from LinkedList to any other Collection with no impact to other parts of the application.
In Python, similarly, we can return an iterator over the available list of Bet instances. The more traditional Python approach is to return the list itself, rather than an iterator over the list. With the introduction of the generators in Python 2.3, however, it is slightly more flexible to return an iterator rather than the collection itself. The iterator could be built, for example, using the yield statement instead of the iter() function.
Reports on all of the currently placed bets.
Player places bets in a Game. This an abstract class, with no actual body for the placeBets() method. However, this class does implement the basic win() and lose() methods used by all subclasses.
Roulette Player Hierarchy. The classes in the Roulette Player hierarchy need to have their superclass adjusted to conform to the newly-defined superclass. The former Passenger57 is renamed to RoulettePlayer. All of the various Roulette players become subclasses of RoulettePlayer.
In addition to renaming Player1326 to Roulette1326, we will also have to change the references in the various classes of the Player1326State class hierarchy. We suggest leaving the class names alone, but merely changing the references within those five classes from Player1326 to Roulette1326.
Craps Player Hierarchy. The classes in the Craps Player hierarchy need to have their superclass adjusted to conform to the newly-defined superclass. We can rename CrapsPlayerMartigale to CrapsMartigale, and make it a subclass of CrapsPlayer. Other than names, there should be no changes to these classes.
The player’s current stake. Initialized to the player’s starting budget.
The number of rounds left to play. Initialized by the overall simulation control to the maximum number of rounds to play. In Roulette, this is spins. In Craps, this is the number of throws of the dice, which may be a large number of quick games or a small number of long-running games. In Craps, this is the number of cards played, which may be large number of hands or small number of multi-card hands.
Returns true while the player is still active. There are two reasons why a player may be active. Generally, the player has a stake greater than the table minimum and has a roundsToGo greater than zero. Alternatively, the player has bets on the table; this will happen in craps when the game continues past the number of rounds budgeted.
Updates the Table with the various Bets.
When designing the Table, we decided that we needed to deduct the amount of a bet from the stake when the bet is created. See the Table Roulette Table Overview for more information.
Game manages the sequence of actions that defines casino games, including Roulette, Craps and Blackjack. Individual subclasses implement the detailed playing cycles of the games. This superclass has methods for notifying the Player to place bets, getting a RandomEvent and resolving the Bet s actually present on the Table.
Contains a Wheel or Dice or other subclass of RandomEventFactory that returns a randomly selected RandomEvent with specific Outcome s that win or lose.
We based this constructor on an design that allows any of these objects to be replaced. This is the Strategy (or Dependency Injection) design pattern. Each of these objects is a replaceable strategy, and can be changed by the client that uses this game.
Additionally, we specifically do not include the Player instance in the constructor. The Game exists independently of any particular Player, and we defer binding the Player and Game until we are gathering statistical samples.
This will execute a single cycle of play with a given Player. For Roulette is is a single spin of the wheel. For Craps, it is a single throw of the dice, which is only one part of a complete game. This method will call player.placeBets() to get bets. It will call eventFactory.next() to get the next Set of Outcomes. It will then call table.bets() to get an Iterator over the Bets. Stepping through this Iterator returns the individual Bet objects. The bets are resolved, calling the thePlayer win(), otherwise call the thePlayer lose().
As a useful default for all games, this will tell the table to clear all bets. A subclass can override this to reset the game state, also.
RouletteGame is a subclass of Game that manages the sequence of actions that defines the game of Roulette.
This will execute a single cycle of the Roulette with a given Player. It will call player.placeBets() to get bets. It will call wheel.next() to get the next winning Bin . It will then call table.bets() to get an Iterator over the Bets. Stepping through this Iterator returns the individual Bet objects. If the winning Bin contains the Outcome, call the thePlayer win(), otherwise call the thePlayer lose().
CrapsGame is a subclass of Game that manages the sequence of actions that defines the game of Craps.
Note that a single cycle of play is one throw of the dice, not a complete craps game. The state of the game may or may not change.
This will execute a single cycle of play with a given Player.
- It will call player.placeBets() to get bets. It will validate the bets, both individually, based on the game state, and collectively to see that the table limits are met.
- It will call dice.next() to get the next winning Throw.
- It will use the throw.updateGame() to advance the game state.
- It will then call table.bets() to get an Iterator; stepping through this Iterator returns the individual Bet objects.
Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t Pass Odds bets. This delegates the real work to the current CrapsGameState object.
Moves a Come Line or Don’t Come Line bet to a new Outcome based on the current throw. This delegates the move to the current CrapsGameState object.
This method should – just as a precaution – assert that the value of theThrow is 4, 5, 6, 8, 9 or 10. These point values indicate that a Line bet can be moved. For other values of theThrow, this method should raise an exception, since there’s no reason for attempting to move a line bet on anything but a point throw.
This will reset the game by setting the state to a new instance of GamePointOff. It will also tell the table to clear all bets.
There are six deliverables for this exercise.
This chapter defines a variety of player strategies. Most of this is based on strategies already defined in Roulette, making the explanations considerably simpler. Rather than cover each individual design in separate chapters, we’ll rely on the experience gained so far, and cover four variant Craps players in this chapter. We’ll mention a fifth, but leave that as a more advanced exercise.
When we looked at our Player hierarchy, we noted that we could easily apply a number of strategies to the Pass Line Odds bet. We use the Martingale strategy for our CrapsMartingale player. We could also use the 1-3-2-6 system, the Cancellation system, or the Fibonacci system for those odds bets. In each of these cases, we are applying the betting strategy to one of the two bets the player will use.
An additional design note for this section is the choice of the two basic bets: the Pass Line and the Pass Line Odds bet. It is interesting to compare the results of these bets with the results of the Don’t Pass Line and the Don’t Pass Odds Bet. In particular, the Don’t Pass Odds Bets involve betting large sums of money for small returns; this will be compounded by any of these betting systems which accelerate the amount of the bet to cover losses. This change should be a simple matter of changing the two base bets used by all these variant players.
All of these players have a base bet (either Pass Line or Don’t Pass) and an odds bet (either Pass Line Odds or Don’t Pass Odds). If we create a superclass, called SimpleCraps , we can assure that all these simple betting variations will work for Pass Line as well as Don’t Pass Line bets. The responsibility of this superclass is to define a consistent set of fields and constructor for all of the subclasses.
Craps 1-3-2-6. This player uses the 1-3-2-6 system for managing their odds bet. From the Roulette 1-3-2-6 player (see Player 1-3-2-6 Overview) we can see that this player will need to use the Player1326State class hierarchy. The craps player will use one of these objects track the state changes of their odds. The base bet will not change.
However, the current definitions of the Player1326State class hierarchy specifically reference Roulette1326. Presenting us with an interesting design problem. How do we repair our design so that Player1326State can work with Roulette1326 and Craps1326?
The only dependency is the field outcome, which both Roulette1326 and Craps1326 must provide to Player1326State objects. We have three choices: extract the field and make it part of an interface, refactor the field up to the superclass, change the defintion of Player1326State to make it more self-contained.
The solution we embrace is changing the definition of Player1326State to include the Outcome. This delegates responsibility to the state, where it seems to belong. This will change all of the constructors, and all of the state change methods, but will cleanly separate the Player1326State class hierarchy from the Player class hierarchy.
Python Duck-Typing
In Python, the relationship between a Player1326State object and the Craps1326 is completely casual. We don’t have to sweat the details of where – precisely – the Outcome is declared.
In Java, however, we must be very careful to sort out the relationship between Craps1326, and Roulette1326.
Python’s flexibility is called duck typing: “if it walks like a duck and quacks like a duck, it is a duck.” In this case, any class with an outcome attribute is a candidate owner for a Player1326State object.
Craps Cancellation. When can examine the Roulette Cancellation Cancellation Player Overview and see that this player will need to use a List of individual betting amounts. Each win for an odds bet will cancel from this List, and each loss of an odds bet will append to this List.
As with the Craps Martingale player, we will be managing a base Pass Line bet, as well as an odds bet that uses the Cancellation strategy. The Cancellation algorithm can be easily transplanted from the original Roulette version to this new Craps version.
Craps Fibonacci. When can examine the Roulette Fibonacci Fibonacci Player Overview and see that this player will need to compute new betting amounts based on wins and losses.
We’ll extend CrapsPlayer to create a CrapsSimplePlayer that can place both Pass Line and Pass Line Odds bets, as well as Don’t Pass Line and Don’t Pass Odds bets. This will allow us to drop the CrapsPlayerPass class, and revise the existing CrapsMartingale.
We have to rework the original Roulette-focused Player1326State hierarchy, and the Roulette1326 class to use the new version of the state objects.
Once this rework is complete, we can add our Craps1326 and CrapsCancellation players.
For additional exposure, the more advanced student can rework the Roulette Fibonacci player to create a CrapsFibonacci player.
CrapsSimplePlayer is a subclass of CrapsPlayer and places two bets in Craps. The simple player has a base bet and an odds bet. The base bet is one of the bets available on the come out roll (either Pass Line or Don’t Pass Line), the odds bet is the corresponding odds bet (Pass Line Odds or Don’t Pass Odds). This class implements the basic procedure for placing the line bet and the behind the line odds bet. However, the exact amount of the behind the line odds bet is left as an abstract method. This allows subclasses to use any of a variety of betting strategies, including Martingale, 1-3-2-6, Cancellation and Fibonacci.
Outcome for either Pass Line or Don’t Pass Line. A right bettor will use a Pass Line bet; a wrong bettor will use the Don’t Pass Line.
Outcome for the matching odds bet. This is either the Pass Line Odds or Don’t Pass Line Odds bet.
A right bettor will use a Pass Line Odds bet; a wrong bettor will use the Don’t Pass Line Odds.
Updates the Table with the various Bets. There are two basic betting rules.
- If there is no line bet, create the line Bet from the line Outcome.
- If there is no odds bet, create the behind the line odds Bet from the odds Outcome.
Be sure to check the price of the Bet before placing it. Particularly, Don’t Pass Odds bets may have a price that exceeds the player’s stake. This means that the Bet object must be constructed, then the price must be tested against the stake to see if the player can even afford it. If the stake is greater than or equal to the price, subtract the price and place the bet. Otherwise, simply ignore it.
CrapsMartingale is a subclass of CrapsSimplePlayer who places bets in Craps. This player doubles their Pass Line Odds bet on every loss and resets their Pass Line Odds bet to a base amount on each win.
The number of losses. This is the number of times to double the pass line odds bet.
Extension to the superclass placeBets() method. This version sets the amount based on the value of CrapsMartingale.betMultiple.
Uses the superclass win() method to update the stake with an amount won. This method then resets lossCount to zero, and resets betMultiple to 1.
Increments lossCount by 1 and doubles betMultiple.
Player1326State is the superclass for all of the states in the 1-3-2-6 betting system.
Much of the original design for this state hierarchy should remain in place. See Player 1-3-2-6 Class for more information on the original design.
Constructs the new Player1326State instance to be used when the bet was a loser. This method is the same for each subclass: it creates a new instance of Player1326NoWins.
This method is defined in the superclass to assure that it is available for each subclass. This will use the outcome to be sure the new state has the Outcome on which the owning Player will be betting.
Craps1326 is a subclass of CrapsSimplePlayer who places bets in Craps. This player changes their Pass Line Odds bet on every loss and resets their Pass Line Odds bet to a base amount on each win. The sequence of bet multipliers is given by the current Player1326State object.
This is the current state of the 1-3-2-6 betting system. It will be an instance of one of the four states: No Wins, One Win, Two Wins or Three Wins.
Uses the superclass to initialize the Craps1326 instance with a specific Table for placing Bets, and set the line bet (Pass Line or Don’t Pass Line) and odds bet (Pass Line Odds or Don’t Pass Odds).
Then the initial state of Player1326NoWins is constructed using the odds bet.
Updates the Table with a bet created by the current state. This method delegates the bet creation to state object’s currentBet() method.
Uses the superclass method to update the stake with an amount won. Uses the current state to determine what the next state will be by calling state‘s objects nextWon() method and saving the new state in state
Uses the current state to determine what the next state will be. This method delegates the next state decision to state object’s nextLost() method, saving the result in state.
CrapsCancellation is a subclass of CrapsSimplePlayer who places bets in Craps. This player changes their Pass Line Odds bet on every win and loss using a budget to which losses are appended and winings are cancelled.
This List keeps the bet amounts; wins are removed from this list and losses are appended to this list. THe current bet is the first value plus the last value.
Invokes the superclass constructor to initialize this instance of CrapsCancellation. Then calls resetSequence() to create the betting budget.
There are few real changes to the original implementation of CancellationPlayer.
See Cancellation Player Class for more information.
Creates a bet from the sum of the first and last values of sequence and the preferred outcome.
This uses the essential line bet and odds bet algorithm defined above. If no line bet, this is created.
If there’s s line bet and no odds bet, then the odds bet is created.
If both bets are created, there is no more betting to do.
There are eight deliverables for this exercise.
Craps allows a large number of opportunities to bet. The bets have different resolutions, leading to quite a complex game.
In Roulette, each bet’s odds are easier to calculate becuase all bets are resolved at once. Placing multiple bets in Roulette is a simple modification to the payout odds and the probability of a win.
A common Craps strategy is to add bets as a kind of “insurance” against losing the line bet. This means that we’ll have numerous working bets: the mandatory line bet, the behind the line odds bet, plus an additional bets. For example, buying the 6 or 8 is a bet that has a payout that matches the actual odds.
We’ll tackle a particularly complex betting strategy. In this case, a player that judges that a game has gone “too long” without a successful resolution. This is a common fallacy in probability theory. A seven is not “due”. The odds of throwing a seven are always 1/6.
There is a distinction between one-roll odds and cumulative odds. The one roll odds of rolling a 7 are . This means that a Pass Line bet will win one time in six on the come out roll. The cumulative odds of rolling a 7 on a number of rolls depends on not rolling a seven (a
chance) for some number of rolls, followed by rolling a 7. The odds are given in the following table.
This cumulative chance of rolling a 7 means that the odds of the game ending with a loss because of throwing a 7 grow as the game progresses.
We can compute the following sequence of odds of losing for larger numbers of rolls of the dice after the point is established: 17%, 28%, 35%, 40%, 43%, 46%, 47%, 48%, 49%.
The idea is that the longer a game runs, the more likely you are to lose your initial Pass Line bet. Consequently, some players count the thows in the game, and effectively cancel their bet by betting against themselves on the Seven proposition. Note that the Seven proposition is a 1/6 probability that pays “5 for 1”, (effectively 4:1).
While the basic probability analysis of this bet is not encouraging, it does have an interesting design problem: the player now has multiple states. They have Pass Line bet, they can use a Martingale strategy for their Pass Line Odds bet, they are counting throws, and they are using a Martingale strategy for a Seven proposition starting with the seventh throw of the game.
We also note that this analysis doesn’t work for wrong bettors using the Don’t Pass Line bet. Their concern is the opposite: a short game may cause them to lose their Don’t Pass bet, but a long game makes it more likely that they would win. One simulation for this is to place Don’t Pass Odds bets after several throws, where the odds bet appears more likely to win.
Decomposition. This leads us to consider the player as a composite object with a number of states and strategies. It also leads us to design a class just to handle Martingale betting.
Note that when we were looking at the design for the various players in Design Cleanup and Refactoring, we glanced at the possibility of separating the individual betting strategies from the players, and opted not to. However, we did force each strategy to depend on a narrowly-defined interface of oddsBet(), won() and lost(). We can exploit this narrow interface in teasing apart the various strategies and rebuilding each variation of Player with a distinct betting strategy object.
The separation of Player from BettingStrategy involves taking the betting-specific information out of each player class, and replacing the various methods and fields with one or more BettingStrategy objects. In the case of Roulette players, this is relatively simple. In the case of Craps players, we note that we have two bets, one with a trivial-case betting strategy where the bet never changes. If we add this NoChange strategy, we can redefine all Craps player’s bets using BettingStrategy objects.
The responsibilities of a BettingStrategy are to
The existing win() and lose() methods are a significant portion of these reponsibilities. The oddsBet() method of the various CrapsSimplePlayer embodies other parts of this, however, the name is inappropriate and it has a poorly thought-out dependency on Player.
The responsibilities of a Player are to
All of the Roulette players will construct a single BettingStrategy object with their preferred Outcome. The various CrapsSimplePlayer classes will have two BettingStrategys: one for the line bet and one for the odds bet.
The only difference among the simple strategies is the actual BettingStrategy object, simplifying the Player class hierarchy to a single Roulette player and two kinds of Craps players: the stub player who makes only one bet and the other players who make more than one bet and use a betting strategy for their odds bet.
Implementing SevenCounter. Once we have this design in place, our SevenCounter player can then be composed of a Pass Line bet, a Pass Line Odds bet, and a Seven proposition bet that will only be used after seven rolls have passed in a single game. The line bet uses the NoChange strategy. The other two bets can use any of the strategies we have built: Martingale, 1-3-2-6 or Cancellation.
Currently, there is no notification to the CrapsPlayer of unresolved bets. The player is only told of winners and losers. The opportunity to place bets indicates that the dice are being rolled. Additionally, the ability to place a line bet indicates that a game is beginning. We can use these two conditions to count the throws in during a game, effectively counting unresolved bets.
BettingStrategy is the abstract superclass for all betting strategies. It contains a single Outcome, tracks wins and losses of Bet s built on this Outcome, and computes a bet amount based on a specific betting strategy.
Initializes this betting strategy with the given Outcome.
Returns a string with the name of the class and appropriate current state information. For the superclass, it simply returns the name of the class. Subclasses will override this to provide subclass-specific information.
NoChangeBetting is a subclass of BettingStrategy that uses a single, fixed amount for the bet. This is useful for unit testing, for modeling simple-minded players, and for line bets in Craps.
This is the amount that will be bet each time. A useful default value is 1.
Uses the superclass initializer with the given Outcome.
Since the bet doesn’t change, this does nothing.
Since the bet doesn’t change, this does nothing.
Returns a string with the name of the class, outcome and betAmount.
MartingaleBetting is a subclass of BettingStrategy that doubles the bet on each loss, hoping to recover the entire loss on a single win.
The number of losses. This is the number of times to double the pass line odds bet.
The the bet multiplier, based on the number of losses. This starts at 1, and is reset to 1 on each win. It is doubled in each loss. This is always
.
Uses the superclass initializer with the given Outcome. Sets the initial lossCount and betMultiplier.
Resets lossCount to zero, and resets betMultiple to 1.
Increments lossCount by 1 and doubles betMultiple.
Returns a string with the name of the class, outcome, the current betAmount and betMultiple.
Bet1326Betting is a subclass of BettingStrategy that advances the bet amount through a sequence of multipliers on each win, and resets the sequence on each loss. The hope is to magnify the gain on a sequence of wins.
This is the current state of the 1-3-2-6 betting system. It will be an instance of one of the four subclasses of Player1326State: No Wins, One Win, Two Wins or Three Wins.
Initializes this betting strategy with the given Outcome. Creates an initial instance of Player1326NoWins using outcome.
Determines the next state when the bet is a winner. Uses state‘s nextWon() method and saves the new state in state.
Determines the next state when the bet is a loser. Uses state‘s nextLost(), method saving the result in myState.
Returns a string with the name of the class, outcome and state.
CrapsOneBetPlayer is a subclass of CrapsPlayer and places one bet in Craps. The single bet is one of the bets available on the come out roll (either Pass Line or Don’t Pass Line). This class implements the basic procedure for placing the line bet, using an instance of BettingStrategy to adjust that bet based on wins and losses.
Constructs the CrapsOneBetPlayer with a specific Table for placing Bet s. This will save the given BettingStrategy in lineStrategy.
Python Creation of A Player
Updates the Table with the various Bet s. There is one basic betting rule.
- If there is no line bet, create the line Bet from the lineStrategy.
Be sure to check the price of the Bet before placing it. Particularly, Don’t Pass Odds bets may have a price that exceeds the player’s stake. This means that the Bet object must be constructed, then the price must be tested against the stake to see if the player can even afford it. If the stake is greater than or equal to the price, subtract the price and place the bet. Otherwise, simply ignore it.
CrapsTwoBetPlayer is a subclass of CrapsOneBetPlayer and places one or two bets in Craps. The base bet is one of the bets available on the come out roll (either Pass Line or Don’t Pass Line). In addition to that, an odds bet (either Pass Line Odds or Don’t Pass Odds) can also be placed. This class implements the basic procedure for placing the line and odds bets, using two instances of BettingStrategy to adjust the bets based on wins and losses.
Typically, the line bet uses an instance of NoChangeBetting.
The odds bets, however, are where we want to put more money in play.
An instance of BettingStrategy that applies to the line bet.
Notification from the Game that the Bet was a winner. The superclass handles the money won and the line bet notification. This subclass adds a comparison between the bet’s Outcome and the oddsStrategy‘s Outcome; if they match, it will notify the strategy, by calling the oddsStrategy ‘s win() method.
CrapsSevenCountPlayer is a subclass of CrapsTwoBetPlayer and places up to three bets in Craps. The base bet is a Pass Line bet. In addition to that, a Pass Line Odds bet can also be placed. If the game runs to more than seven throws, then the “7” proposition bet (at 4:1) is placed, using the Martingale strategy.
The Pass Line bet uses an instance of NoChangeBetting. The Pass Line Odds bet uses an instance of Bet1326Betting.
The BettingStrategy for the seven bet. Some argue that this should be a no-change strategy. The bet is rare, and – if effect – the player bets against themself with this. One could also argue that it should be a Martingale because each throw after the seventh are less and less likely to win.
The number of throws in this game. This is set to zero when we place a line bet, and incremented each time we are allowed to place bets.
This will create a NoChangeBetting strategy based on the Pass Line Outcome. It will also create a MartingaleBetting strategy based on the Pass Line Odds Outcome. These will be given to the superclass constructor to save the game, the line bet and the odds bet. Then this constructor creates a Bet1326Betting strategy for the Seven Proposition Outcome.
Updates the Table with the various Bet s. There are three basic betting rules.
- If there is no line bet, create the line Bet from the lineStrategy. Set the throwCount to zero.
- If there is no odds bet, create the odds Bet from the oddsStrategy.
- If the game is over seven throws and there is no seven proposition bet, create the proposition Bet from the sevenStrategy.
Each opportunity to place bets will also increment the throwCount by one.
There are two groups of deliverables for this exercise. The first batch of deliverables are the new Betting Strategy class hierarchy and unit tests. The second batch of deliverables are the two revised Craps Player classes, the final Roll Counter Player, and the respective unit tests.
Also, note that these new classes make the previous CrapsSimplePlayer, CrapsMartingale, Craps1326 and CrapsCancellation classes obsolete. There are two choices for how to deal with this change: remove and reimplement. The old calsses can be removed, and the Simulator reworked to use the new versions. The alternative is to reimplement the original classes as Facade over the new classes.
Betting Strategy class hierarchy. There are four classes, each with an associated unit test in this group of deliverables.
CrapsPlayer class hierarchy. There are three classes, each with an associated unit test in this group of deliverables.
The game of Craps has given us an opportunity to extend and modify an application with a considerable number of classes and objects. It is large, but not overly complex, and produces interesting results. Further, as a maintenance and enhancement exercise, it gave us an opportunity to work from a base of software, extending and refining the quality of the design.
We omitted exercises which would integrate this package with the Simulator and collect statistics. This step, while necessary, doesn’t include many interesting design decisions. The final deliverable should be a working application that parses command-line parameters, creates the required objects, and creates an instance of Simulator to collect data.
Refactoring. We note that many design decisions required us to explore and refactor a great deal of the application’s design. In writing this part, we found it very difficult to stick to our purpose of building up the design using realistic steps and realistic problem solving. A book with a description of an already-completed structure does not help new designers learn the process of design, and does not help people to identify design problems and correct them. Because of that philosophy, the complete refactoring of the design in the Design Cleanup and Refactoring chapter was an important activity because it is the kind of thing that distinguishes a good design from a haphazard design.
Our observation is that this kind of design rework happens late in the life of a project, and project managers are uncomfortable evaluating the cost and benefit of the change. Further, programmers are unable to express the cost of accumulating technical debt by making a series of less-than-optimal decisions.
Simpler is Better. Perhaps, the most important lesson that we have is the constant search for something we call The Big Simple. We see the history of science as a search for simpler explanations of natural phenomena. The canonical example of this is the distinction between the geocentric model and the heliocentric model of the solar system. Both can be made to work: astronomers carefully built extremely elaborate models of the geocentric heavens and produced accurate predictions of planetary positions. However, the model of planetary motion around the sun describes real phenomena more accurately and has the added benefit of being much simpler than competing models.
To continue this rant, we find that software designers and their managers do not feel the compulsion and do not budget the time to identify the grand simplification that is possible. In some cases, the result of simplifying the design on one axis will create more classes. Designers lack a handy metric for “understandability”; managers are able to count individual classes, no matter how transparently simple. Designers often face difficulties in defending a design with many simple classes; some people feel that a few complex classes is “simpler” because it has fewer classes.
As our trump card, we reference the metrics for complexity. McCabe’s Cyclomatic Complexity penalizes if-statements. By reducing the number of if-statements to just those required to create an object of the proper class, we reduce the complexity. The Halstead metrics penalize programs with lots of internal operators and operands when compared with the number of operands in the interface. Halstead measures simple, transparent classes as less complex. Neither measure penalizes overall size in lines of code, but rather they penalize decision-making and hidden, internal state. A badly designed, complex class has hidden internal states, often buried in nested if-statements. We emphasize small, simple classes with no hidden features.
Our concrete examples of this simplification process are contained in three large design exercises. In Throw Builder Class, we showed a kind of rework necessary to both generalize and isolate the special processing for Craps. In Design Cleanup and Refactoring, we reworked classes to create an easy-to-explain architecture with layers and partitions of responsibility. Finally, in Roll-Counting Player Class, we uncovered a clean separation between game rules and betting strategies.
In the first section we will present elements of the game of Blackjack. Blackjack uses cards and has fairly complex rules for counting the number of points in a hard of cards.
Blackjack offers relatively few bets, most of which are available based on the state of the game. We’ll cover these bets and the conditions under which they are allowed in the second sectionj.
Finally, we will describe some common betting and playing strategies that we will simulate. In this case, we have playing strategies that are unique to Blackjack, combined with betting strategies initially defined in Roulette and reworked in Craps.
Blackjack centers around hands composed of cards drawn from one or more standard 52-card decks. The standard deck has 13 ranks in 4 suits; the suit information has no bearing on game play. The player and the house are both dealt hands, starting with two cards. The house has one card exposed (the up card ) and one card concealed (the hole card ), leaving the player with incomplete information about the state of the game. The player’s objective is to make a hand that has more points than the dealer, but less than or equal to 21 points. The player is responsible for placing bets when they are offered, and taking additional cards to complete their hand. The dealer will draw additional cards according to a simple rule: when the dealer’s hand is 16 or less, they will draw cards (or hit), when it is 17 or more, they will not draw additional cards (or stand pat).
An interesting complication is the point values of the cards. The number cards (2-10) have the expected point values. The face cards (Jack, Queen and King) all have a value of 10 points. The Ace can count as one point or eleven points. Because of this, an Ace and a 10 or face card totals 21. This two-card winner is called “blackjack”. Also, when the points include an ace counting as 11, the total is called soft ; when the ace counts as 1, the total is called hard. For example, A-5 is called a soft 16 because it could be considered a hard 6. A-10-5 is a hard 16.
The betting surface is marked with two places for bets: a single bet, placed before any cards are dealt, and an insurance bet, offered only when the dealer’s up card is an ace. There are a few additional bets, and a few player choices. We’ll step through some variations on the sequence of play to see the interactions a player has during a game. Note that a casino table seats a number of players; like Craps and Roulette, the player opposes the house, and the presence or absence of other players has no bearing on the game.
Note
Rule Variations
There are seemingly endless variations in the exact playing rules used by different casinos. We’ll focus on a relatively common version of the rules. With this as a basis, a number of variations can be explored.
Typical Scenario. The player places an initial bet. Since the bet is “blind”, it is like an ante in poker. The player and dealer are each dealt a pair of cards. Both of the player’s are face up, the dealer has one card up and one card down. If the dealer’s card is an ace, the player is offered insurance. The details will be described in a separate sceanario, below.
Initially, the player has a number of choices.
If the player’s hand is over 21, their bet is resolved immediately as a loss. Resolving these bets early is an important part of the house’s edge in Blackjack. If the player’s hand is 21 or less, however, it will be compared to the dealer’s hand for resolution.
The dealer then reveals the hole card and begins taking cards according to their fixed rule. When their total is 16 or less, they take an additional card; if their total is 17 or more, they stand pat. This rule is summarized as “hit on 16, stand on 17”. In some casinos a dealer will hit a soft 17 (A-6), which improves the house’s edge slightly.
If the dealer busts, the player wins. If the dealer did not bust, then the hands are compared: if the player’s total is more than the dealer, the player wins; if the totals are equal, the bet is a push; otherwise the dealer’s total is more than the play and the player loses.
If the player’s hand is an ace and a 10-point card (10, Jack, Queen or King), the hand is blackjack and the the ante is paid off at 3:2. Otherwise, winning hands that are not blackjack are paid off at 1:1.
Dealer Shows An Ace. If the dealer’s up card is an ace, the player is offered an insurance bet. This is an additional proposition that pays 2:1 if the dealer’s hand is exactly 21 (a 4/13 probability). The amount of the bet is half the original ante. If this insurance bet wins, it will, in effect, cancel the loss of the ante. After offering insurance to the player, the dealer will check their hole card and resolve the insurance bets. If the hole card is 10-point card, the dealer has blackjack, the card is revealed, and insurance bets are paid. If the hole card is not a 10-point card, the insurance bets are lost, but the card is not revealed.
In the unusual case that the dealer shows an ace and the player shows blackjack (21 in two cards), the player will be offered “even money” instead of the insurance bet. If the player accepts the even money offer, their hand is resolved at 1:1 immediately, without examining the dealer’s hole card or playing out the hand. If the player declines even money, they can still bet or decline insurance. Checking the odds carefully, there is a 4/13 (30.7%) chance of the dealer having 21, but insurance is paid as if the odds were 1/3 (33.3%). Since the player knows they have 21, there is a 4/13 probability of a push plus winning the insurance bet (both player and dealer have 21) and a 9/13 probability of winning at 3:2, but losing the insurance bet (effectively a push).
Split Hands. When dealt two cards of the same rank, the player can split the cards to create two hands. This requires an additional bet on the new hand. The dealer will deal an additional card to each new hand, and the hands are played independently. Generally, the typical scenario described above applies to each of these hands. The general rule of thumb is to always split aces and eights.
The ideal situation is to split aces, and get dealt a 10-point card on each ace. Both hands pay 3:2. A more common situation is to have a low card (from 2 to 7) paired up with the ace, leading to soft 13 through soft 18. Depending on the dealer’s up card, these are opportunities to double down, possibly increasing the bet to 4 times the original amount.
Some casinos restrict doubling down on the split hands. In rare cases, one or more of the new cards will match the original pair, possibly allowing further splits. Some casinos restrict this, only allowing a single split. Other casinos prevent resplitting only in the case of aces.
Note that the player’s election to split hands is given after any offer and resolution of insurance bets.
Unlike Roulette and Craps, Blackjack has only a few available bets. Generally, the following choices all involve accepting an offer by creating an additional bet.
Blackjack also offers the player some choices that don’t involve creating additional bets. In the casino these are shown through gestures that can be seen clearly by dealers and other casino staff.
Play begins with a sequence of offers which can be accepted or declined: insurance, even money resolution of insurance, and splitting a hand. After these offers, the player must select between the three remaining choices (hit, double or stand) for each of their hands with a total less than 21.
In Roulette, there are no additional offers for the player to accept or decline. In Craps, we ignored the only offer made to a player. See Some Betting Strategies for details on this rule. Adding this interaction to Craps would require defining an additional method for CrapsPlayer to accept or decline an offer. We would also have the CrapsGame interrogate the Table for the presence of come point odds bets, make the offer to the player, and then activate or deactivate the bet for the next throw only. This level of interaction was a nuance we elected to ignore at that time.
Because of the complexity of Blackjack, the strategies for play focus on the cards themselves, not on the bets. Some players use a single fixed bet amount. Some players will attempt to count cards, in an effort to determine the approximate distribution of cards in the deck, and vary their play or bets accordingly. The casinos actively discourage counting in a number of ways. The most common way is to shuffle 5 decks of cards together, and only deal the first 156 or so of the available 260 cards. Additionally, they will ask people to leave who are obviously counting.
The player’s responses to the various offers are what defines the playing strategy in Blackjack. The information available to the player is their hand (or hands), and the dealer’s up card. Therefore, all of the strategies for play decompose to a matrix showing the player’s total vs. dealer’s up card and a recommendation for which offers to accept or decline.
Most players will decline the insurance offer, except when they hold a 21. In that rare case the even money offer should be declined, since the expected value analysis of the result shows a slightly better payout by competing against the dealer.
The decision matrix has two parts: accepting or rejecting the split offer, and choosing among hit, stand or double down. You can buy cards in casino gift-shops that summarize a playing strategy in a single, colorful matrix with a letter code for split, hit, double and stand. Note that each decision to hit results in a new card, changing the situation used for decision-making. This makes the strategy an interesting, stateful algorithm.
A player could easily add the betting strategies we’ve already defined to their Blackjack play strategies. A player could, for example, use the Martingale system to double their bets on each hand which is a loss, and reset their betting total on each hand which is a win. Indeed, our current design permits this, since we disentangled the betting strategies from the individual games in Roll-Counting Player Class.
We will present a survey of the new classes gleaned from the general problem statement in Problem Statement as well as the problem details in Blackjack Details. This survey is drawn from a quick overview of the key nouns in these sections. We will not review those nouns already examined for Craps and Roulette.
In reading the background information and the problem statement, we noticed a number of nouns that seemed to be new to the game of Blackjack.
The following table summarizes some of the new classes and responsibilities that we can identify from the problem statement. This is not the complete list of classes we need to build. As we work through the exercises, we’ll discover additional classes and rework some of these classes more than once.
We also have a legacy of classes available from the Roulette and Craps solutions. We would like to build on this infrastructure as much as possible.
The unique, new feature of Blackjack is the more sophisticated collaboration between the game and the player. This interaction involves a number of offers for various bets, and bet resolution. Additionally, it includes offers to double, hit or stand. We’ll examine parts of a typical sequence of play to assure ourselves that we have all of the necessary collaborations and responsibilities.
A good way to structure this task is to do a CRC walkthrough. For more information on this technique see A Walkthrough of Roulette. We’ll present the overall sequence of play, and leave it to the student to manage the CRC walkthrough.
Typical Blackjack Game
Place Bets. The Game will ask the player to place a bet. If the player doesn’t place a bet, the session is over.
Create Hands. The Game will deal two cards to the Player’s initial Hand.
The Game will create an initial hand of two cards for the dealer. One of the cards is the up card, and is visible to the player.
Insurance? The Game gets the Dealer’s Hand’s up card. If it is an Ace, then insurance processing is perforemed.
Split? The Game examines the Player’s Hand to see if the two cards are of equal rank. If so, it offers a split. The player accepts by creating an additional Bet. The original hand is removed; The Game splits the two original Cards then deals two additional Cards to create two new Hands.
Some casinos prevent further splitting, others allow continued splitting of the resulting hands.
Play Out Player Hands. The following are done to play out each of the Player’s Hands.
Bust? Double? Hit? Stand? While the given Hand is under 21 points, the Game must extend three kinds of offers to the Player. If the Player accepts a Hit, the hand gets another card and this process repeats.
If the Player accepts Double Down, the player must create an additional bet, and the hand gets one more card and play is done. If the Player Stands Pat, the play is done. If the hand is 21 points or over, play is done.
Resolve Bust. The Game must examine each Hand; if it is over 21, the Hand is resolved as a loser.
Play Out Dealer Hand. The Game then examines the Dealer Hand and deals Cards on a point value of 16 or less, and stops dealing Cards cards on point value of 17 or more.
Compare Hands. For each hand still valid, the Game compares the Player’s Hand point value against the Dealer’s Hand point value. Higher point value wins. In the case of a tie, it is a push and the bet is returned.
When the Player wins, a winning hand with two cards totalling 21 (“blackjack”) is paid 3:2, any other winning hand is paid 1:1.
Will we really need both Deck and the multiple deck Shoe? Wouldn’t it be simpler to combine this functionality into a single class?
There are two separate responsibilities here. The deck owns the basic responsibility to build the 52 cards. The shoe, on the other hand, owns the responsibility to deal cards to hands.
We want to be able to simulate games with 1 to 8 decks. A single deck game can simply deal directly from the deck. In a multi-deck game, all of the decks are shuffled together and loaded into a shoe for dealing. The difference between one deck and a five-deck shoe is that the shoe can produce 20 kings in a row. While rare, our simulation does need to cover situations like this.
Also, we may want to build a slightly different shoe that simulates the continuous shuffling machine that some casinos use. In this case, each hand is reshuffled back into the shoe, preventing any attempt at card counting. We don’t want to disturb the basic, common deck when introducing this additional feature.
Won’t all those player interactions break our design?
That’s unlikely. All of that player interaction is in addition to the placeBets() interface. Since we’ve separated the core features of all players from the game-specific features, we can add a subclass to player that will be handle the Blackjack interaction. This new player subclass will have a number of additional methods to handle insurance, even money, split and the regular play questions of hit, double and stand.
In parallel, we’ve separated the core features of all games from the unique features for a specific game. We can now add a subclass for Blackjack which adds a number of methods to offer insurance, even money, split and the regular play questions of hit, double and stand to the Blackjack player.
I can’t find an Outcome in Blackjack. Is it the Ante? If so, the odds vary based on the player’s Hand, but that doesn’t seem to be a RandomEvent.
Good point. We’ll examine this in detail in the exercises. Clearly, the bets are placed on the Ante and Insurance as the two core Outcome s in Blackjack. The Insurance outcome (really a “dealer has blackjack” outcome) is fixed at 2:1. The ante payoff depends on a complex condition of the hand: for a soft 21, or blackjack, it pays 3:2; otherwise it pays 1:1. This will lead to a new subclass of Outcome that collaborates with the hand to determine the payout to use.
The “even money” is offered before ordinary insurance to a player with blackjack. It, however, pays even money on the ante, and doesn’t create a new bet; in this respect it could be thought of as a change in the outcome on which the ante bet is created. Accepting the even money offer is a little bit like moving the ante to a “even money for dealer blackjack” outcome, which has 1:1 odds instead of 3:2 odds. Further, this special outcome is resolved before the dealer peeks at their hole card. Perhaps this is a special best resolution procedure, not a proper instance of Outcome.
This chapter introduces a number of simple classes. When exploring Roulette, we introduced classes very slowly. In this chapter, we are introducing the class hierarchy for cards, the deck of cards and the shoe, used by the dealer to create hands. The next chapter will introduce the hand, and the problems of scoring the value of the hand.
Card. The standard playing card has two attributes: a rank (Ace, 2 through 10, Jack, Queen, or King) and a suit (Clubs, Diamonds, Hearts or Spades). The set of all 52 combinations comprises a full deck. Additionally, in Blackjack, a card has a point value, which is a number from 1 to 11, and is based on the rank. In the case of an Ace, it is also based on the hand in which the card is evaluated. This collaboration with a hand complicates the responsibilities for a single card. However, the basic set of responsibilities of the Card class include keeping the rank, suit and point value of a single standard playing card.
The issue of suit requires some care. In the game of Blackjack, suits don’t matter. Indeed, for the purposes of simulation, we could simply discard the notion of suit. However, for the purposes of making a reasonably complete model of real-world objects, it makes sense to implement the suit of a card, even if we do nothing with it.
We’d like to provide symbolic variable names for the suits. In Java we’ll use static final variables to define the suits. In Python we’ll use class variables. This will give us four named constants for each of the suits, something that tends to make the software easier to read. Similarly, we’ll provide named constants for the three face cards and the ace.
Points. We have three different rules for establishing the point value of a card. This is a big hint that we have three subclasses. One subclass includes the Aces, which are either 1 or 11 points. Another subclass includes the number cards from 2 to 10, where the rank is the point value. Finally, the third subclass includes the face cards, where the point value is fixed at 10. These three subclasses implement slightly different versions of a method to return the point value of the card. For more discussion on this, see Card-Deck-Shoe Questions and Answers FAQ for more discussion.
The problem of determining the value of aces is something we will have to defer until after we create the hand class. First, we’ll implement the basic card, then we’ll develop the hand, and decide how the hand computes its number of points from the cards. We do note that the terminology used gives us some hint as to how to structure our design. Players refer to a soft total and a hard total. An A-6 hand is called a soft 17, and a hard 7. A soft hand has some flexibility in how it is played. If you hit a soft 17, and get a face card (for example, a Jack), you now have an A-J-6, totalling hard 17. Considering this, we can provide two point-value functions for each rank, a hard value and a soft value. For all but aces, the two values are the same. For aces, the two values are different. This would allow a hand to compute a hard total and a soft total for the hand as a whole. While this design does have some potential problems in dealing with multiple aces in a single hand, we’ll let it stand until we have more design in place.
Deck. A deck of cards has responsibility for shuffling and dealing the various cards. Additionally, it should constuct the complete set of 52 cards. We note that shuffling uses a random number generator, but a deck isn’t the same kind of random event factory that a Wheel or pair of Dice is. In the case of Wheel and Dice, the random events were based on random selection with replacement : an individual event can be regenerated any number of times. In the case of a deck, however, once a card has been dealt, it will not show up until the deck is shuffled.
In Roulette and Craps, the odds depended on a RandomEvent: either the Bin or Throw. In Blackjack, the ante’s win amount depends on the player’s entire hand. This means that being dealt an individual card isn’t the same kind of thing that a throw of the dice is; rather it suggests that the dealer’s shoe is the random event factory, and the entire hand is the random event created by dealing cards. Continuing this line of thought, an Outcome‘s win amount could depend on a RandomEvent, if we consider the entire hand to be the random event.
Considering an entire hand to be a single random event is skating on pretty thin ice, so we won’t force-fit a Deck into the random event factory part of our framework. Instead, we will let Deck stand alone. We’ll design a simple initialization for a deck that constructs the 52 cards. Beyond that, the notions of shuffling and dealing can be assigned to the shoe.
Since a Deck is a container, we have to examine the available collection classes to determine which concrete class we need. Interestingly, we only need two features of Collection: the add() method and the iterator(). These methods are implemented for all of the variations of Set and List. The only collection we can disregard is HashSet as that will use more storage than necessary.
Shoe. The dealer’s shoe is where Cards are shuffled and dealt to create individual hands. A shoe will be built from some number of Decks. More properly, the shoe will contain the Cards from those Decks. The Deck objects aren’t really used for much more than constructing batches of individual Card objects. The Shoe responsibilities include proper initialization using a given number of decks, periodic shuffling and proper dealing.
In a casino, the shuffling involves a ritual of spreading the cards on the table and stirring them around thouroughly, then stacking them back into the shoe. The top-most card is extracted, shown to the players, discarded, and a marker card is cut into the shoe at least two decks from the end, leaving about 100 cards unplayable after the marker. While most of the ritual does not require careful modeling, the presence of undealt cards at the end of the shoe is important as a way to defeat card-counting strategies.
Since a Shoe is a container, we have to examine the available collection classes to determine which concrete class we need. Interestingly, we only need two features of Collection: the addAll() method to put another deck into the shoe and the iterator(). These methods are implemented for all of the variations of List. We will have to disregard the various Set implementations because they impose their own unique orders on the elements, different from our shuffled order.
The simplest shuffling algorithm iterates through all of the Cards in the Shoe s collection, and exchanges that Card with the card in a randomly-selection position. In order to move Card s around freely within the structure, an ArrayList or Vector could be used. See Card-Deck-Shoe Questions and Answers for more discussion on shuffling.
Why are there three subclasses of Card? Isn’t it simpler to have one class and use an if-statement to sort out the point values.
Primarily, there are three classes because they have different behaviors. Merging them into a single class and sorting out the behaviors with an if-statement is often a problem.
First, and most important, if-statements add complexity. The question “wouldn’t it be simpler to use an if-statement” is a kind of oxymoron.
Second, and almost as important, if-statements dilute responsibility assignments. Combining all three subclasses into one puts three slightly different responsibilities into one place, making it more difficult to debug problems. Further, we could wind up repeating or other reusing the if-statement in inappropriate ways. If we create separate subclasses, the clear separation of responsibility becomes a matter of definition, not a matter of following a complex thread of programming logic.
Third, if-statements limit growth, adaptation and change. If we have a modification to the rules, for example, making 1-eyed Jacks wild, we would prefer to simply introduce another subclass. We find that chasing down one or more related if-statements to assure ourselves that we are correctly handling the new subtlety rapidly gets out of hand.
Is that the best shuffling algorithm Won’t it sometimes move a card twice? Won’t it sometimes put a card back into the original spot?
Yes, it may move some cards twice and it may leave a card in position. This is part of random behavior. This algorithm touches every card, swapping it with a randomly selected card. We are assured that every card was put into a random position. Sometimes a card will have been moved more than once, but the minimum criteria is that every card has been moved.
While a shuffling algorithm that models the real world is tempting, this adds complexity for no actual improvement in the randomization. A popular technique in the real world is to cut the deck in half and then riffle the cards into a single pile. If done with the kind of perfection that software provides (cutting the deck exactly in half and exactly alternating the cards) this shuffle leads to a perfectly predictable cycle of orders. What makes this shuffle work in the real world is the random inaccuracies in cutting and riffling. We don’t see any value in modeling these physical phenomenon.
A similar analysis holds for the kind of shuffle done in the casino. In essence, they do a shallow copy if the original List object, and then rebuild the shoe’s List by picking cards at random from the copy. This produces a result that is statistically indistinguishable from our algorithm, which uses an element-by-element swap.
One fruitless side-track is using the seemingly-random hash code values of the Card objects. This only puts the cards into a single fixed, but arbitrary order. An apparently interesting alternative is to generate a random index for each Card and then sort by this index or assemble a SortedSet. We note that sorting is
, where our algorithm is
, running much faster than any sort.
Card defines a basic playing card. It has a rank, a suit, a hard point value and a soft point value. The point value methods are defined for the number cards from 2 to 10. Two subclasses handle face cards, where the point values are both 10, and aces, where the soft point value is 1, and the hard point value is 11.
This class also defines symbolic names for the suits (Clubs, Diamonds, Hearts and Spades) and face cards (Jack, Queen and King).
Here are Unicode characters for the suits.
There’s one tiny problem with the Unicode characters: the suits don’t sort into the order preferred by Bridge players. Since it’s irrelevant for this class of problems, we’ll ignore this.
For the truly fussy, we would need to assure that the suits have a symbol character and a preferred sort order.
In Python, symbolic names are often declared within the class, not within the initialization method function.
The rank of the card. This is a number from 1 (Ace) to 13 (King).
The suit of the card. This is a character code for Clubs, Diamonds, Hearts or Spades.
Returns the rank of this card.
Returns the soft value of this card. The superclass simply returns the rank. Subclasses can override this. Face cards will return 10, Aces will return 11.
Returns the hard value of this card. The superclass simply returns the rank. Subclasses can override this. Face cards will return 10, Aces will return 1.
Ideally, we’d like this function to return the rank and suit of this card.
However, in Python 2, there’s an issue with the definition of the str() function. In Python 2, this function must return an ASCII-encoded string.
If we’re using Unicode suit names, this function isn’t helpful, and we have to resort to an explicit Unicode formatting string.
This will return a proper unicode string. We have to use print someCard.unicode() instead of print someCard.
FaceCard is a Card with a point value of 10. This defines jack, queens and kings.
Returns the soft value of this card, 10.
Returns the hard value of this card, 10.
Returns a short String displaying the rank and suit of this card. The ranks should be translated to single letters: 11 to 'J', 12 to 'Q' and 13 to 'K'.
AceCard is a Card with a soft point value of 11 and a hard point value of 1. This definces Aces.
Returns the soft value of this card, 11.
Returns the hard value of this card, 1.
Returns a short String displaying the rank and suit of this card. The rank is always 'A'.
Deck defines the standard deck of 52 cards. It both constructs the deck and acts as a container for one instance of a deck.
Creates the Collection, cards, and then creates the 52 cards. A simple nest pair of loops to iterate through the suits and ranks will work nicely for this.
Creating A Full Deck
For all four suits:
Shoe defines the dealer’s shoe, which contains from 1 to 8 decks of cards. For one deck shoes, one card is reserved as undealable. For multiple deck shoes from 1 to 3 decks can be left undealt. The exact number is selected at random within 6 cards of the expected number of decks.
The approximate number of decks to be left undealt in the shoe.
If rng is None, create a generator from random.Random.
Initializes the Shoe by creating the required number of decks and building the cards List. This saves the stopDeal value, which is the number of decks left in the shoe. Typically, this is two, and approximately 104 cards are left in the shoe.
This also saves the random number generator used to shuffle.
To facilitate testing, this initializes the dealing iterator to the unshuffled List of cards. This will produce cards in a fixed order.
Shuffles the shoe by swapping every element in the Shoe.cards List with a random element.
Creates an Iterator, Shoe.deal that can be used to deal cards.
If the stopDeal is non-zero, do the following to exclude several decks from the deal.
- Create a random number, v, such that
.
- Step through the deal iterator
times, removing approximately stop cards from being dealt as part of ordinary play.
Return the Shoe.deal iterator so that the game can get cards from the Shoe.
There are ten deliverables for this exercise.
This chapter introduces the hand, and the problems of scoring the value of the hand. It also introduces a subclass of Outcome that can handle the more complex evaluation rules for Blackjack.
The hand of cards is both a container for cards, but is also one dimension of the current state of the player’s playing strategy. A player may have multiple hands, and the hands are resolved independently.
For each hand, the responsibilities include collecting the cards, producing a hard and soft point total and determining the appropriate payout odds.
Collecting cards is trivial. Each hand is a simple bag or multiset of cards. A hand can’t be any kind of Set because there can easily be duplicate cards in a multiple deck game. In an 8-deck game, there are 8 separate instances of A ♠.
Determining the payout odds for a Hand is somewhat more complex.
To be compatible with other games, we’ll be creating Bet objects which are associated with Outcomes. In Roulette, there were a profusion of Outcomes, each relatively simple with fixed odds. In Craps, there were fewer Outcomes, some of which had odds that depended on a throw of the dice.
The player’s Hand must be associated with an Outcome so that we can match the Outcome of a Bet and the Outcome of a Hand to determine the payout.
In the case of Roulette, each Bin was simply a set of winning Outcomes. In the case of Craps, both the dice and the game had a mixtures of winning, losing and unresolved Outcomes. The Bets were simply associated with Outcomes and the Wheel, Dice or Game gave us sets of winning (and losing) Outcomes.
In Blackjack, there are relatively few outcomes. And it’s not clear how each Outcome associates with a Hand.
Survey of Outcomes. To figure out how to associate Hand and Outcome, we’ll start by enumerating all the individual Outcomes.
“Insurance” at 2:1. This is a winner when the dealer’s hand is blackjack; and the “Ante” bet will be a loser. It is only offered when the up card is an Ace. This is a loser when the dealer’s hand is not blackjack, and the Ante bet is unresolved.
“Even Money” at 1:1. This is offered in the rare case of the player’s hand is blackjack and the dealer’s up card being an Ace. If accepted, it can be looked at as a switch of the Ante bet to an “Even Money” outcome, which is then resolved as a winner.
“Ante” paying 1:1. This payout occurs when the player’s hand is less than or equal to 21 and the dealer’s hand goes over 21. This payout also occurs when the player’s hand is less than or equal to 21 and greater than the dealer’s hand.
This outcome is a loser as soon as the player’s hand goes over 21. It is also a loser when the player’s hand is less than or equal to 21 and less than the dealer’s hand.
“Ante” paying 3:2. This payout occurs when the player’s hand is blackjack. The odds depend on the player’s hand.
“Ante” as a push, paying 0:1. This payout occurs when the player’s hand is less than or equal to 21 and equal to the dealer’s hand. The odds depend on both player and dealer’s hand.
In Craps, we identified the Field and Horn Outcomes which had winning amounts that depended on the specific Throw. See Throw Builder Overview, for more information. Additionally, we compared Bets against the Outcomes as part of the transition from one GameState to another. See Resolving Bets, for more information. In order for this to work correctly, some bets were changed frm a generic Outcome (a “Line Bet”) to an Outcome with different odds.
What Class is Hand? It appears that the hand, as a whole, is not simply associated with an Outcome. It appears that a Hand must produce an Outcome based on it’s content, the dealer’s content, and possibly the state of the game.
This is a small change from the way Dice and Bin work. Those classes were associated with an Outcome. A Blackjack Hand, however, must do a bit of processing to determine which Outcome it represents.
Also, changes to the state of the game depend on the values of both hands, as well as the visible up card in the dealer’s hand. This makes the state of the hand part of the evolving state of the game, unlike the simple RandomEvents we saw in Roulette and Craps.
Choices. We have a few ways we can deal with Hand.
Hand is an “Event”? While a Hand appears to be a subclass of RandomEvent, it jars our sensibilities. A Hand is built up from a number of Cards.
One could rationalize calling a Hand an “event” by claiming that the Shoe is the random event factor. The act of shuffling is when the event is created. The complex event is then revealed one card at a time.
It seems that we need to define a Hand class that shares a common interface with a RandomEvent, but extends the basic concept because a hand has an evolving state.
Hand is different. While we can object to calling a Hand a single “event”, it’s difficult to locate a compelling reason for making a Hand into something radically different from the other subclasses of RandomEvent: Bin and Dice.
Hand Features. Our first design decision, then is to define Hand as a kind of RandomEvent. We’ll need to create several Outcomes: Insurance, Even Money, Ante and Blackjack.
The Hand will produce an appropriate Outcome based on the hand’s structure, the game state, and the dealer’s hand. Generally, each Hand will produce a simple Ante outcome as a winner or loser. Sometimes a Hand will produce a Blackjack outcome.
Sometimes the Player and Blackjack Game will collaborate to add an Insurance or Even Money outcome to the Hand.
Our second design problem is to calculate the point value of the hand. Because of aces, hands can have two different point totals. If there are no aces, the total is hard. When there is an Ace, there are two totals. The hard total uses Aces as 1. The soft total uses Aces as 11.
We note that only one ace will participate in this hard total vs. soft total decision-making. If two aces contribute soft values, the hand is at least 22 points. Therefore, we need to note the presence of at least one ace to use the soft value of 11, all other cards will contribute their hard values to the hand’s total value.
A Hand has a two states.
Hard. When the hand has no aces, there is one total.
Also, when a hand has one or more aces, but the soft total is over 21, then the hand only has a hard total.
Soft. When a hand has at least one Ace and the soft total is 21 or less, there is a hard and a soft total.
A hand with no cards could be said to be in the hard total state. As each card is added, the state may change. It may change to soft when an Ace is added and the soft total will be 21 or less. It may changes to hard when the soft total is over 21.
State Change Rules. We can see that our Hand state change is split among the various subclass of Card.
The Card (which will be inhereted by FaceCard) we need to check the Hand hard total. If the hard total is over 21, the state change method needs to switch the Hand to the hard total state. Otherwise, it leaves the state alone.
The AceCard, however, must use a slightly different algorithm. If the hard total is over 21, the state change method needs to switch the Hand to the hard total state. Otherwise, the hard total is 21 or under, and the state needs to switch the Hand to the soft total state.
Since there are only two distinct total algorithms, we can actually put both of them right into each Hand object and use simple assignment statements to choose which algorithm is in force at any given state of the Hand.
As a final design decision, we need to consider creating any subclass esof Outcome to handle the variable odds for the “Ante” bet. We don’t need a subclass for the “Insurance” or “Even Money”, because the base Outcome does everything we need.
The notable complication here is that there are three different odds. If the player’s hand beats the dealer’s hand and is blackjack, the odds are 3:2. If the player’s hand beats the dealer’s hand, but is not blackjack, the odds are 1:1. If the player’s hand equals the dealer’s hand, the result is a push, effectively 0:1 odds.
It doesn’t seem like a new class of Outcomes are necessary. We simply have some alternative outcomes that can be produced by a Hand.
The player can only place one of four basic bets.
The “Ante” bet that starts play. This is assmed to be 1:1 unless game conditions change this to 3:2 or a push. This is the essential Outcome for the player’s primary Bet.
The “Insurance” and “Event Money” bets. One of these may be active after the first cards are dealt.
For the insurance Outcome to be active, the dealer must be showing an Ace and the player’s hand is not 21.
For even money Outcome to be active, the dealer must be showing an Ace and the player’s hand is 21.
These are resolved immediately – if the dealer does not have 21, these bets are lost. If the dealer has 21, these bets win, but the Ante is a loss.
The “Double Down” bet. This is generally offered at any time. It can be looked at as an an additional amount added to the “ante” bet and a modification to game play.
Objects. It seems simplest to create a few Outcome instances: Ante, Insurance, Even Money and Double Down.
The Table will have to merge the double-down bet amount into the Ante bet amount.
HandTotal computes a total of the cards in a hand. There are distinct subclasses for the two algorithms.
Creates a new HandTotal object associated with a given hand.
Computes a total of all the cards in the associated hand. If card is not None, omit the the indicated card from the total.
This method is abstract, it should return NotImplemented. Each subclass will provide an implementation.
Computes the hard total of all the cards in the associated hand. If card is not None, omit the the indicated card from the total.
Computes the soft total of all the cards in the associated hand. If card is not None, omit the the indicated card from the total.
Each subclass of Card needs to provide a method that sets the hand’s total algorithm.
There are two different implementations for this method in Card, and AceCard.
Note that each implementation differs only in what is done with the soft total is 21 or less. With a little care, this single difference can be factored out into the AceCard subclass.
To determine what alternative total object is appropriate for this hand, do the following.
Get the soft total of all cards except this one.
Add the soft points of this card. This happens to be the same as the hard points, but a good program doesn’t repeat this piece of information; it uses the Card.softValue() method.
If this is over 21, then set the Hand.altTotal to to Hand.hard.
If the soft total is 21 or less, then the Hand.altTotal is left untouched.
To determine what alternative total object is appropriate for this hand, do the following.
Get the soft total of all cards except this one.
Add the soft points of this card. This happens to be 11 for an Ace, but a good program doesn’t repeat this piece of information; it uses the Card.softValue() method.
If this is over 21, then set the Hand.altTotal to to Hand.hard.
Otherwise, the soft total is 21 or less, then set the Hand.altTotal to Hand.soft.
Hand contains a collection of individual Cards, and determines an appropriate total point value for the hand.
Holds the collection of individiual Cards of this hand.
A instance of HandHardTotal. This means that hand.hard.total() will produce the hard total of the cards in this hand.
This method is used as one of the point totals for the hand.
A instance of HandSoftTotal. This means that hand.soft.total() will produce the soft total of the cards in this hand.
Creates an empty hand. The Hard.cards variable is initialized to an empty sequene.
The Hand.hard and Hand.soft objects are initialized to HandHardTotal and HandSoftTotal objects.
Also, Hand.altTotal is set to Hand.hard.
If card is provided, then use the add() method to add this card to the hand..
Add this card to the Hand.cards list.
Evaluate Card.setAltTotal() to update the hard vs. soft total calculation for this hand.
Computes the alternate total of this hand using the Hand.altTotal object.
If there are any aces, and the soft total is 21 or less, this will be the soft total. If there are no aces, or the soft total is over 21, this will be the hard total.
Returns the number of cards in the hand, the size of the List.
Returns true if this hand has a size of two and a value of 21.
Returns true if this hand a value over 21.
Returns an iterator over the cards of the List.
Displays the content of the hand as a String with all of the card names.
There are six deliverables for this exercise.
The bets in Blackjack are associated with a hand. This will lead us to create a subclass of table to handle this complexity. In order to manage the relationships between hand and bet, we’ll rework hand, also.
When we look at the game of Blackjack, we note that a player’s Hand can be split. In some casinos, resplits are allowed, leading to the possibility of 3 or more Hands. Each individual Hand has a separate ante Bet and seperate resolution. This is different from the way bets are currently managed for Roulette and Craps.
We have several alternatives.
Assign responsibility to the Table to keep track of bets by Player tied to the various Hands.
This would make the Hand a potential key into a Map that associated a Hand with a Bet. However, Hands change state, making them poor choices for keys to a Map.
We could put a reference to a Hand into the Bet. In this way, as each Bet is resolved, the relevant Hand can be evaluated.
We could put a reference to the Ante Bet in the Hand. In this way, as each Hand is resolved, the relevant Bet can be paid or lost.
We’ll design Hand to contain the associated ante Bet. This is least disruptive to the Bet which is a simple thing used widely in other games.
Additional Bets. While most Bets are associated with a specific Hand, the insurance Bet is always resolved before an additional hand can be created. There doesn’t seem to be an essential association between the initial Hand and the insurance Bet. We can treat insurance as a Bet that follows the model established for Craps and Roulette.
Currently, Bets are placed on the Table. If we create a subclass named BlackjackTable that uses a Hand when creating a Bet, we can have this method do both tasks: it can attach the Bet to the Hand, and it can save the Bet on the Table.
BlackjackTable is a Table that handles the additional association between Bets and specific Hands in Blackjack.
Uses the superclass constructor to create an empty Table.
Updates the given hand to reference the given bet. Then uses the superclass placeBet() to add this bet to the list of working bets.
Hand contains a collection of individual Cards, and determines an appropriate total point value for the hand.
We need to add a field and some appropriate methods for associating a Bet with a Hand.
Holds a reference to the ante Bet for this hand. When this hand is resolved, the associated bet is paid and removed from the table.
There are four deliverables for this exercise.
After reviewing the procedure provided in A Walkthrough, we’ll define the basic game class for Blackjack. This will require a stub class for a Blackjack Player. We’ll also revisit the fundamental relationship between Game, Hand and Player. We’ll invert our viewpoint from the Player containing a number of Hands to the Hands sharing a common Player.
The sequence of operations in the game of Blackjack is quite complex. We can describe the game in either of two modes: as a sequential procedure or as a series of state changes.
Additionally, we need to look at the various collaborations of the Game. We also need to address the question of handling the dealer’s rules.
Maintaining State. The sequential description of state, where the current state is defined by the step that is next, is the default description of state in most programming languages. While it seems obvious beyond repeating, it is important to note that each statement in a method changes the state of the application; either by changing state of the object that contains the method, or invoking methods of other, collaborating objects. In the case of an active class, this description of state as next statement is adequate. In the case of a passive class, this description of state doesn’t work out well because passive classes have their state changed by collaborating objects. For passive objects, instance variables and state objects are a useful way to track state changes.
In the case of Roulette, the cycle of betting and the game procedure were a simple sequence of actions. In the case of Craps, however, the game was only loosely tied to each the cycle of betting and throwing the dice, making the game state a passive part of the cycle of play. In the case of Blackjack, the cycle of betting and game procedure are more like Roulette.
Most of a game of Blackjack is simply sequential in nature: the initial offers of even money, insurance and splitting the hands are optional steps that happen in a defined order. When filling the player’s Hands, there are some minor sub-states and state changes. Finally, when all of the player’s Hands are bust or standing pat, the dealer fills their hand. Finally, the hands are resolved with no more player intervention.
Most of the game appears to be a sequence of offers from the Game to the BlackjackPlayer; these are offers to place bets, or accept cards, or a combination of the two, for each of the player’s Hands.
In Craps and Roulette, the Player was the primary collaborator with the Game. In Blackjack, however, focus shifts from the Player to the Hand. This changes the responsibilities of a BlackjackPlayer: the Hand can delegate certain offers to the BlackjackPlayer for a response. The BlackjackPlayer can become a plug-in strategy to the Hand, providing responses to offers of insurance, even money, splitting, doubling-down, hitting and standing pat. The BlackjackPlayer‘s response will change the state of the Hand. Some state changes involve getting a card, and others involve placing a bet, and some involve a combination of the two.
We’ll use the procedure definition in A Walkthrough. Following this procedure, we see the following methods that a Hand and a BlackjackPlayer will need to respond to the various offers from the BlackjackGame. The first portion of the game involves the BlackjackPlayer, the second portion invovles one or more Hand s. The collaboration is so intensive, we have created a kind of swimlane table, showing the operations each object must perform. This will allow us to expand Hand and BlackjackTable as well as define the interface for BlackjackPlayer.
There are a few common variation in this procedure for play. We’ll set them aside for now, but will visit them in Variant Game Rules.
Insurance. The insurance procedure involves additional interaction between Game and the the Player‘s initial Hand. The following is done only if the dealer is showing an ace.
Filling the Hands. The procedure for filling each Hand involves additional interaction between Game and the the Player‘s initial Hand. An Iterator used for perform the following procedure for each individual player Hand.
There is some variation in this procedure for filling Hands. The most common variation only allows a double-down when the Hand has two cards.
Hand-specific Decisions. Some of the offers are directly to the BlackjackPlayer, while others require informing the BlackjackPlayer which of the player’s Hands is being referenced.
How do we identify a specific hand?
While the difference is minor, it seems slightly more sensible for the BlackjackGame to make offers directly to the BlackjackPlayer, including a reference to the relevant Hand.
In a sense, the dealer is a special player. They have a fixed set of rules for hitting and standing. They are not actually offered an insurance bet, nor can they split or double down.
However, the dealer does participate in the hand-filling phase of the game, deciding to hit or stand pat.
The dealer’s rules are quite simple. Should the Dealer be a special subclass of BlackjackPlayer; one that implements only the dealer’s rules?
Or should the Dealer be a feature of the Game. In this case, the Game would maintain the dealer’s Hand and execute the card-filling algorithm.
Using an subclass of BlackjackPlayer is an example of Very Large Hammer design pattern. We only want a few features of the BlackjackPlayer class.
Refactoring. To avoid over-engineering these, we could refactor player into two components. An object that handles hand-filling, and an object that handles betting strategies.
The dealer would only use the hand-filling component of a player.
Mutability. To avoid over-engineering this, we can look at features that are likely to change. The dealer hand-filling rules seem well-established throughout the industry.
Further, a change to the hand-filling rules of the dealer would change the nature of the game enough that we would be hard-pressed to call in Blackjack. A different hand-filling rule would constitute a new kind of game.
We’re confident, then, that the dealer’s hand can be a feature of the BlackjackGame class.
BlackjackPlayer is a subclass of Player that responds to the various queries and interactions with the game of Blackjack.
Some kind of List which contains the initial Hand and any split hands that may be created.
Uses the superclass to construct a basic Player. Uses the newGame() to create an empty List fot the hands.
Creates a new, empty list in which to keep Hands.
Returns an iterator over the List of Hands this player is currently holding.
Returns true if this Player accepts the even money offer. The superclass always rejects this offer.
Returns true if this Player accepts the insurance offer. In addition to returning true, the Player must also create the Insurance Bet and place it on the BlackjackTable. The superclass always rejects this offer.
If the hand has two cards of the same rank, it can be split. Different players will have different rules for determine if the hand should be split ot not.
If the player’s rules determine that it wil accepting the split offer for the given Hand, hand, then the player will
- Create a new Ante bet for this hand.
- Create a new one-card Hand from the given hand and return that new hand.
If the player’s rules determine that it will not accept the split offer, then None or null is returned.
If the hand is split, adding cards to each of the resulting hands is the responsibility of the Game. Each hand will be played out independently.
Returns true if this Player accepts the hit offer for this Hand. The superclass accepts this offer if the hand is 16 or less, and rejects this offer if the hand is 17 more more. This mimics the dealer’s rules.
Failing to hit and failing to double down means the player is standing pat.
Displays the current state of the player, and the various hands.
Card must provide the Game some information required to offer insurance bets.
We’ll need to add an offerInsurance() method on the class Card. The Card superclass must respond with False. This means that the FaceCard subclass will also respond with False.
The AceCard subclass, however, must respond with True to this method.
Hand should retain some additional hand-specific information. Since some game allow resplitting of split hands, it’s helpful to record whether or not a player has declined or accepted the offer of a split.
Returns true if this hand has a size of two and both Cards have the same rank. Also sets Hand.splitDeclined to true if the hand is not splittable.
Returns the first Card from the list of cards, the up card.
BlackjackGame is a subclass of Game that manages the sequence of actions that define the game of Blackjack.
Note that a single cycle of play is one complete Blackjack game from the initial ante to the final resolution of all bets. Shuffling is implied before the first game and performed as needed.
This is the dealer’s Shoe with the available pool of cards.
This is the dealer’s Hand.
Constructs a new BlackjackGame, using a given Shoe for dealing Cards and a BlackjackTable for recording Bets that are associated with specific Hands.
A single game of Blackjack. This steps through the following sequence of operations.
Call BlackjackPlayer.newGame() to reset the player. Call BlackjackPlayer.getFirstHand() to get the initial, empty Hand. Call Hand.add() to deal two cards into the player’s initial hand.
Reset the dealer’s hand and deal two cards.
Call BlackjackGame.hand.getUpCard() to get the dealer’s up card. If this card returns true for the Card.offerInsurance(), then use the insurance() method.
Only an instance fo the subclass AceCard will return true for offerInstance(). All other Card classes will return false.
Iterate through all Hands, assuring that no hand it splittable, or split has been declined for all hands. If a hand is splittable and split has not previously been declined, call the Hand‘s split() method.
If the split() method returns a new hand, deal an additional Card to the original hand and the new split hand.
Iterate through all Hands calling the fillHand() method to check for blackjack, deal cards and check for a bust. This loop will finish with the hand either busted or standing pat.
While the dealer’s hand value is 16 or less, deal another card. This loop will finish with the dealer either busted or standing pat.
If the dealer’s hand value is bust, resolve all ante bets as winners. The OutcomeAnte should be able to do this evaluation for a given Hand compared against the dealer’s bust.
Iterate through all hands with unresolved bets, and compare the hand total against the dealer’s total. The OutcomeAnte should be able to handle comparing the player’s hand and dealer’s total to determine the correct odds.
Offers even money or insurance for a single game of blackjack. This steps through the following sequence of operations.
Get the player’s BlackjackPlayer.getFirstHand(). Is it blackjack?
If the player holds blackjack, then call BlackjackPlayer.evenMoney().
If the even money offer is accepted, then move the ante bet to even money at 1:1. Resolve the bet as a winner. The bet will be removed, and the game will be over.
Call BlackjackPlayer.insurance(). If insurance declined, this method is done.
If insurance was accepted by the player, then check the dealer’s hand. Is it blackjack?
If the dealer hold blackjack, the insurance bet is resolved as a winner, and the ante is a loser; the bets are removed and the game will be over.
If the dealer does not have blackjack, the insurance bet is resolved as a loser, and the ante remains.
If insurance was declined by the player, nothing is done.
Fills one of the player’s hands in a single game of Blackjack. This steps through the following sequence of operations.
While points are less than 21, call BlackjackPlayer.doubleDown() to offer doubling down. If accepted, deal one card, filling is done.
If double down is declined, call BlackjackPlayer.hit() to offer a hit. If accepted, deal one card. If both double down and hit are declined, filling is done, the player is standing pat.
If the points are over 21, the hand is bust, and is immediately resolved as a loser. The game is over.
Displays the current state of the game, including the player, and the various hands.
There are eight deliverables for this exercise.
Our objective is to provide variant player strategies. This chapter will upgrade our stub player class to give it a complete, working strategy. This simple player can serve as the superclass for more sophisticated strategies.
In addition to the player’s own hand, the player also has the dealer’s up card available for determining their response to the various offers. The player has two slightly different goals: not bust and have a point total larger than the dealer’s. While there is some overlap between these goals, these lead to two strategies based on the dealer’s up card. When the dealer has a relatively low card (2 through 6), the dealer has an increased probability of going bust, so the player’s strategy is to avoid going bust. When the dealer has a relatively high card (7 through 10), the dealer will probably have a good hand, and the player has to risk going bust when looking for a hand better than the dealer’s.
A Simple Strategy. We’ll provide a few rules for a simple player strategy. This strategy is not particularly good. Any book on Blackjack, and a number of web sites, will have a superior strategy. A better strategy will also be considerably more complex. We’ll implement this one first, and leave it to the student to research more sophisticated strategies.
These rules will boil down to short sequences of if-statements in the split(), hit() and doubleDown() methods.
In some contexts, complex if-statements are deplorable. Specifically, complex if-statements are often a stand-in for proper allocation of responsibility. In this class, however, the complex if-statements implement a kind of index or lookup scheme. We have, for this exercise, 8 alternatives which depend on a two-dimensional index. One dimension contains four conditions that describe the player’s hand. The other dimension involves two conditions that describe the dealer’s hand. When we look at the various collections, we see that we can index by primitive types or object instances. In this case, we are indexing by conditions; we would have to map each condition to either a numeric code or a distinct object in order to eliminate the if-statements.
When we look at the conditions that describe the player’s hand, these are clearly state-like objects. Each card can be examined and a state transition can be made based on the the current state and the card. After accepting a card, we would check the total and locate the appropriate state object. We can then use this state object to index into a collection.
When we look at the conditions that describe the dealer’s hand, there are only two state-like objects. The dealer’s op card can be examined, and we can locate the appropriate state object. We can use this state object to index into a collection.
The final strategy could be modeled as a collection with a two-part index. This can be nested collection objects, or a Map that uses a 2-valued tuple as an index.
SimpleBlackjackPlayer is a subclass of BlackjackPlayer that responds to the various queries and inteactions with the game of Blackjack.
This player implements a very simple strategy, shown above in the Blackjack Player Strategy table.
Returns true if this Player accepts the even money offer. This player always rejects this offer.
Returns true if this Player accepts the insurance offer. This player always rejects this offer.
Returns a new, empty Hand if this Player accepts the split offer for this Hand. The Player must create a new Hand, create an Ante Bet and place the on the new Hand on the BlackjackTable.
If the offer is declined, both set Hand.splitDeclined to true and return null.
This player splits when the hand’s card’s ranks are aces or eights, and declines the split for all other ranks.
Returns true if this Player accepts the double offer for this Hand. The Player must also update the Bet associated with this Hand.
This player tries to accept the offer when the hand points are 10 or 11, and the dealer’s up card is 7 to 10 or ace. Otherwise the offer is rejected.
Note that some games will restrict the conditions for a double down offer. For example, some games only allow double down on the first two cards. Other games may not allow double down on hands that are the result of a split.
Returns true if this Player accepts the hit offer for this Hand.
If the dealer up card is from 2 to 6, there are four choices for the player. When the hand is 11 or less, hit. When the hand is a hard 12 to 16, stand. When the hand is a soft 12 to soft 16 (hard 2 to hard 6), hit. When the hand is 17 or more, stand.
If the dealer up card is from 7 to 10 or an ace, there are four choices for the player. When the hand is 11 or less, double down. When the hand is a hard 12 to 16, hit. When the hand is a soft 12 to soft 16 (hard 2 to hard 6), hit. When the hand is 17 or more, stand.
Otherwise, if the point total is 9 or less, accept the hit offer.
There are two deliverables for this exercise.
There are a number of variations in the sequence of game play offered by different casinos. In addition to having variations on the player’s strategy, we also need to have variations on the casino rules.
There are wide variations in the ways people conduct Blackjack games. We’ll list a few of the variations we have heard of.
The restrictions on splitting and doubling down are small changes to the offers made by a variation on BlackjackGame. This would require creating a subclass of BlackjackGame to implement the alternative rules.
The variations in the dealer’s rules (hitting a soft 17) is also a small change best implemented by creating a subclass of BlackjackGame.
Reducing the number of decks is an easy change to our application. Since our main application constructs the Shoe before constructing the Game, it can construct a single-deck Shoe.
Payout Odds. Handling the variations in the payout odds is a bit more complex.
The Player creates each Hand, associated with a Bet. The Bet is associated with the simple Ante outcome.
At the end of the Game, the Hand does a comparison between itself and the Dealer’s Hand to determine the odds for the Ante outcome.
It’s a 1:1 Outcome if the player does not have blackjack.
It’s a 3:2 bet if the player does have blackjack.
Allocating this responsiblity to the Hand was a bad design decision.
We should have allocated responsibility to the Game. We will need to add a method to the Game which compares a player’s Hand with the dealer’s Hand, sets the Outcome correctly, and resolves the bet.
BlackjackGame is a subclass of Game that manages the sequence of actions that define the game of Blackjack.
Note that a single cycle of play is one complete Blackjack game from the initial ante to the final resolution of all bets. Shuffling is implied before the first game and performed as needed.
This method is used at the end of the game to resolve the player’s Ante bet.
If the player went bust, their hand was already resolved.
If the dealer went bust, all remaining bets are resolved as winners.
The remaining situation (both player and dealer have non-bust hands) requires this BlackjackGame.adjustOdds() method. This method will set the hand’s outcome’s odds to 3:2 if the player holds Blackjack.
OneDeckGame is a subclass of BlackjackGame that manages the sequence of actions for a one-deck game of Blackjack with a 6:5 blackjack OutcomeAnteLowOdds.
Typically, this is built with a one-deck instance of Shoe.
The OneDeckGame.adjustOdds() method overrides the superclass. This method will set the hand’s outcome’s odds to 6:5 if the player holds Blackjack.
There are three deliverables for this exercise.
The game of Blackjack has given us an opportunity to further extend and modify an application with a considerable number of classes and objects. These exercises gave us an opportunity to work from a base of software, extending and refining our design.
We omitted concluding exercises which would integrate this package with the Simulator and collect statistics. This step, while necessary, doesn’t include many interesting design decisions. The final deliverable should be a working application that parses command-line parameters, creates the required objects, and creates an instance of Simulator to collect data.
We have specifically omitted delving into the glorious details of specific player strategies. We avoided these details for two reasons.
Next Steps. There are a number of logical next steps for the programmers looking to build skills in object-oriented design. We’ll split these along several broad fronts.
Additional Technology. There are several technology directions that can be pursued for further design experience.
This application is a command-line application, which makes it easy to build and test.
Another area for building skills in design is the implementation of programs that make extensive use of a database.
A graphical user interface (GUI) application will add the technology for graphical display, and responding to user input events.
A web application will add the technology for HTTP web transactions, HTML, CSS, and – potentially – a database.
Application Areas. We selected simulation because it’s part of the historical foundation for object-oriented programming. We selected casino games because they have a reasonable level of complexity.
Clearly, numerous other application areas can be selected as the basis for problems. The number and variety of human endevors that can be automated is quite large.
Moving beyond simulation or doing simulation on something more complex than a casino table game is a good next step.
Additional Depth in Design Patterns. It’s possible to use additional and different design patterns to extend and refine the application that you have built.
Any book or web site on OO design patterns will provide numerous examples of patterns. These can be used for add flexibility to these casino game simulators.
Python unittest encourages us to build a test module separate from the application class we’re testing. The test module will have one more more TestCase classes, each of which has one or more test methods.
Workflow. One approach to unit testing is to build the tests first, then write a class which at least doesn’t crash, but may not pass all the tests. Once we have this in place, we can now debug the tests until everything looks right. This is called test-driven development.
We’d start with unittest files in the test directory of our project. In this case, we’d have testCard.py and testDeck.py. We also need skeleton files in our src directory: cards.py and deck.py.
Generally, the process for creating a class with the unit tests has the following outline.
Write a skeleton for the target class. One that doesn’t really do anything, but at least compiles and has the right method names.
Write the test class. This will create instances of the target class, exercise those instances, and make assertions about the state of those instances.
Run the test, knowing that will fail. Sometimes our target class is so simple that we get it right the first time. Other times, the target class is more complex and there are parts we didn’t finish when we wrote the skeleton version.
While tests are still failing.
At this point, the target class passes the suite of tests. However, it may still fail to meet other quality criteria. For example, it may have a convoluted structure, or it may be inefficient, or it may lack appropriate documentation. In any case, we’re not really done with development.
While our target class fails to meet our quality standards.
Using unittest. A test runner will locate all the TestCase instances, execute them and summarize the pass/fail status of each individual test method.
Generally, we’ll organize our project directory to have a test directory and a src directory.
Here is an example of running a test from the command line.
Let’s assume we’ve built two classes in some chapter; pretend that we’re building Card and Deck . One class defines a standard playing card and the other class deals individual card instances. We need unit tests for each class.
Generally, unit tests are taken to mean that a class is tested in isolation. In our case, a unit test for Card is completely isolated because it has no dependencies.
However, our Deck class depends on Card, leading us to make a choice. Either we have to create a Mock Card that can be used to test Deck in complete isolation, or our Deck test will depend on both Deck and Card. The choice depends on the relative complexity of Card, and whether or not Deck and Card will evolve independently.
Some folks demand that all testing be done in “complete” isolation with a lot of mock classes. Other folks are less strict on this, recognizing that Deck and Card are very tightly coupled and Card is very simple. The Mock Card is almost as complex as Card.
testCard.py
Generally, we create a number of object instances in the setup method. In this case, we created five distinct Card instances. These object constructors imply several things in our card module.
Note that we didn’t write tests to create all suits or all ranks. We can add these later. In some cases, where we are working in large teams, we may need to produce tests which exhaustively enumerate all possibe alternatives. For the purposes of learning OO design, we only need to sketch out our class by defining the tests it must pass.
In testString(), we exercise the __str__() method of the Card class to be sure that it formats cards correctly. These tests tell us what the formatting algorithm will look like.
In testOrder(), we exercise the __cmp__() method of the Card class to be sure that it compares card ranks correctly. Note that we have explicitly claimed that the equality test only checks the rank and ignores the suit; this is typical for Blackjack, but won’t work well for Bridge or Solitaire.
Note that we didn’t exhaustively test all possible comparisons among the four cards we defined. We only need to execute the various paths within the __cmp__() method. When we initially create the test class, we may not have written the Card class yet. What we have to do is develop enough tests to get started, and add tests as we start writing our Card class.
This is the standard main program for unittest modules.
Our initial Card class needs to have just enough of an API to allow the tests to run. Here’s our skeleton Card class.
card.py
This class will – minimally – participate in the testing. It won’t pass many tests, but it serves as a basis for developing the class implementation.
Python doctest module requires us to put our test cases and expected results into the docstring comments on a class, method or function. The test case information becomes a formal part of the API documentation. When a docstring includes doctest comments, the string serves dual duty as formal test and a working example.
Workflow. To use doctest is to build the class, exercise it in the Python interpreter, then put snippets of the interactive log into our docstrings.
Generally, we follow this outline.
Using Doctest. There are two ways to use doctest.
Start with Python 2.6, you can run doctest from the command line like this.
You can also add a test function to a module which runs doctest on the module. This test function should have a name which begins with _ to make it a name that’s private to the module and not part fo the module’s interface.
This _test() function is the main function of the module, so that when you run the module, it performs it’s internal doctests.
Test-Driven Development. Note that the strict test-driven development (TDD) approach to unit testing is to build the tests first, then write a class which at least doesn’t crash, but may not pass all the tests. Once we have this in place, we can now debug the tests until everything looks right. This is called test-driven development, because the test cases come first, driving the rest of the work.
The test-driven approach doesn’t fit well with doctest. It’s very difficult to develop the test output without having the class available to exercise interactively. Also, we don’t want to put comprehensive test scripts into our class docsting; they can easily get too long to be useful.
Also, it’s difficult to “fake” the interactive log when designing the class. It’s usually simpler to have a working class and then add test cases.
Finally, we need to pick essential features for demonstration in the doctest comments. We can’t easily write comprehensive tests that cover all features or all line of code in doctest comments.
Limitations. Because of a few small gaps in Python 2’s support for Unicode, it’s difficult to use doctest for testing the Card class.
Specifically, Python 2 source is assumed to be ASCII. The Unicode results of formatting a card can’t easily be put into the Python source. Even if the explicit source encoding comment is used, the doctest module can’t cope well with tests that involve Unicode.
It can be challenging to do stand-alone unit tests with Mock classes to replace real classes. This can make for a rather long doctest string.
Let’s assume we’ve built two classes in some chapter; pretend that we’re building Card and Deck. One class defines a standard playing card and the other class deals individual card instances. We’ll define some minimal doctests.
The first step is to develop our baseline class. Here’s a module that seems like it works.
This version uses ASCII suit names instead of Unicode suit names.
card.py - Initial
Exercise the Class. Once we have the class, we need to exercise it using interactive Python. Here’s what we saw.
During our session, small parts of the script show the preferred use cases for our class. We copy these from the interactive session and paste them into our class docstrings.
Update the Docstrings. After we have some output that shows correct behavior of our class, we can put that output into the class docstrings. Here’s our updated card.py module with doctest comments.
card.py - Revised
There are two doctest frameworks. Doctest can be used for “stand-alone” testing. It can also be incorporated into unittest testing.
The general approach to stand-alone testing is to add the following to a module. When you run the module, it executes all doctest strings found throughout the module. Tests will pass silently. Any output is a failure of some kind.
A more complete approach is to use unittest for most testing and doctest to emphasize specific use cases in the docstrings. When doing this, you’ll have a test module that looks something like the following.
testCard.py
Application Program Interface (API) documentation is absolutely essential. The easiest and most reliable way to produce this documentation is by using a tool that examines the source itself and develops the document directly from the programs. By using cleverly formatted Python docstrings, we can augment that analysis with easy-to-understand descriptions.
In the case of Python, there are several tools for extracting documentation from the source. Two populare ones are
Workflow. Generally, the workflow has the following outline.
Using the Epydoc. When you install Epydoc, it creates a script that you can use. To run Epydoc, you’ll use a command similar to the following.
The -v option provides detailed debugging information for incorrectly formatted docstrings. The --docformat option specifies that the various docstrings use RST markup. The --output option defines the directory to which the documentation is written. The arguments (in this case, card.py) is a list of package directories or module files to be documented.
Note that RST is not the default markup language for Epydoc. You must either specify this on the command line or in the module source. To identify the formatting in each module you must provide the format as the value of a __docformat__ module global variable.
Using Sphinx. When you install Sphinx, it creates a script that you can use.
Generally, you’ll run the $ sphinx-quickstart script to create an empty documentation directory.
This interactive script will ask a number of questions, allowing you to pick sensible directories and file names.
You’ll need to include two extensions to enable Sphinx to create your API documentation.
You’ll then add content to your index.rst file. This file is the root for the documentation. It can be very simple, or or it can do include other files to break a large document into manageable pieces.
The most important commands are the following.
To run Sphinx, you’ll use a command similar to the following.
ReStructured Text. Basic RST rules allow you to have a nice-looking document, with numbered and bulleted lists. You can include code examples and doctest results, also. With the “inline” markup, you can specify italic, bold or code samples.
Additionally, RST offers “field” markup to tie your documentation to specific pieces of Python syntax. This includes method parameters, return values, class instance variables, module variables, etc.
We write our module, class and method docstrings using the RST markup language. RST is one of many structured text markup languages, where simple indentation and formatting rules are used to interpret your documetation. These formatting rules help the tools deduces the structure of your document (sections, list, etc.) and the presentation (bold, italic, or font changes.) These rules are – generally – pretty simple rules that plain text documents have been using since documents were first stored on computers.
Fundamentally, the RST formatting rules are implemented by a module named docutils. For additional documentation on RST, see the Sphinx web site (http://sphinx.pocoo.org) and the Docutils web site (http://docutils.sourceforge.net/).
In addition to document structure, deduced from the layout, RST also uses explicit directives and interpreted text (or “inline”) markup.
Document Structure. Generally, you must write in paragraphs. A blank line is the end of one paragraph and the beginning of another. Also, different indentation will signal paragaph changes. The indent rule is handy for making bullet lists or numbered lists.
A line that is indented and begins with - is a bulleted list.
A line that starts with digits and periods is a numbered list. Lists can nest within each other.
If you need to have sections and subsections (you’ll almost always do this in the docstring for a module or package), you “underline” the title with lines of ===, --- or ~~~.
To include code code samples and doctest, you’ll use either the simple :: marker. Or the explicit .. code-block:: directive.
Generally, the first paragraph must be a pithy summary of the material to follow. This paragraph will often be used in overviews and index pages.
Example testCard Module. For example, our module document might look like this.
We started with an overview paragraph. It summarizes the module in a single sentence.
We have an underlined section heading. In this document, the highest level of the outline is underlined with =‘s. The second level is underlined with -.
RST is very flexible with the underlining rules.
We have a bullet list. Simply indent, and begin the paragraph with -. Lists can be nested, the RST processor will work this out based on the indentation of the various sublists.
We used the .. autoclass:: directive to gather docstring documentation from the class docstring and include it in the overall module docstring.
We included a literal block of code after a paragraph which ends with ::. The following material is indented to show what should be formatted specially.
Interpreted Text, or Inline Markup. In addition to basic document structure rules, RST includes a way to show that a span of characters should be interpreted specially. This is sometimes called Inline Markup because it is within the structural markup.
*words* will render the words in italic. This can also be done with :emphasis:`words`.
**words** will render the words in bold. This can also be done with :strong:`words`.
``words`` will render the words in a fixed font to indicate that it is a code sample. Literal programming text can also use :literal:`words`.
Code samples can also be done with :samp:`word {replaceable}`. In this case, the material enclosed in {} is displayed in italics: word replaceable.
Additionally, there are several cross-reference inline markup formats available for code elements.
Here’s an example of a paragraph using some inline markup to make some characters italic, other bold, and still others a fixed-width find that makes them looke like code.
RST Field markup is primarily used to tie your documentation directly to Python language structures. Field markup is a separate paragraph of the form :tag arg: body. We won’t cover all of the tags, just enough to produce basic documentation.
Field markup also provides several standard kinds of standard “formal paragraphs” within your document. We’ll look at these separately.
Functions and Method Functions. The following tags are used to define detailed features of a method function.
Here’s an example of a method function docstring that uses @param tags.
Classes and Modules. The following tags are used to define specific variables in a module or class.
Here’s an example of a class definition docstring that uses :ivar: tags.
Directives. RST has a number of useful directives available for structuring the documentation. Sphinx uses all of the basic RST directives and adds a large number of additional directives.
A directive is an RST markup command starts with a special .. line, and may include a number of lines indented within the directive. One of the common ones is the .. code-block:: directive. The :: is an essential part of the directive syntax.
It looks like this.
The directive starts with the .. line and continues through the indented section. The directive content ends with the end of the indentation.
Epydoc uses the :tag: syntax; it doesn’t define new RST directives. Because of this, there are two styles for some of the more advanced markup: an Epydoc tag style and a Sphinx directive style.
Standard Paragraphs. There are several kinds of standard paragraphs that are part of any well-written document set. These include things like
Related Topics.
Epydoc usess the :seealso: tag to generate a “Related Topics” paragaph with references to other documents.
Sphinx uses the .. seealso:: directive line to generate additional references.
Admonitions (Notes, Warnings, etc).
Epydoc uses tags like :note:, :attention:, :bug:, and :warning: tags to generate standard types of admonition paragraphs.
Sphinx uses directives like .. note::, .. attention::, and .. warning:: directives to generate standard types of admonition paragraphs. Other adminitions include “caution”, “danger”, “error”, “hint”, “important”, “tip”.
Status. You can track the development and deployment status of your programs. Tags like :version:, :todo:, :deprecated:, :since:, :status:, and change: are used by both Epydoc and Sphinx.
Bibliographic Information. You can provide standard publication information. Tags like :author:, :organization:, :copyright:, :license: and :contact: can be used.
Here’s an example of a module with detailed class documentation.
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Application Program Interface (API) documentation is absolutely essential. The easiest and most reliable way to produce this documentation is by using a tool that examines the source itself and develops the document directly from the programs. By using cleverly formatted comments, we can augment that analysis with easy-to-understand descriptions.
In the case of Java, the javadoc tool is the most common way for extracting documentation from the source.
Workflow. Generally, the process for creating a class with the documentation has the following outline.
Using Javadoc. Generally, Javadoc is part of your Python Itegrated Development Enviromment (IDE). To run Javadoc from the command line, you’ll use a command similar to the following.
The -classpath option provides all of the additional .jar files that are required to interpret the classes. The -d option defines the directory to which the documentation is written. The arguments (in this case, Card.java and TestCard.java) is a list of package directories or java files to be documented.
Additionally, you can provide a package-info.java file in each package directory to create an overall comment for a Java package. This file contains a Javadoc comment block and a package statement. You can also create a doc-files directory to contain additional documentation outside the Javadoc framework.
The essential technique for Javadoc is to place documentation comments immediately before class, interface, constructor, method, or field declarations. A documentation comment starts with /** and ends with */. They are Java comments with an extra *. Javadoc markup is written in HTML. These comments must be placed immediately before the class or method to which they apply.
The first sentence is captured separately as a summary, and must be carefully written to be pithy and useful. Here’s an example of a class comment.
Javadoc tags are primarily used to tie your documentation directly to Java language structures. Each tag is a separate paragraph that starts with @ and a tag. We won’t cover all of the tags, just enough to produce basic documentation.
The tags also provide several standard kinds of standard “formal paragraphs” within your document. We’ll look at these separately.
Methods. The following tags are used to define detailed features of a method.
@param name some text
This tag defines a positional parameter, name. There’s a space between the name and the documentation text, some text.
@return some text
This tag defines the return value from the method.
Here’s an example of a method comment that uses @param tags.
Standard Paragraphs. There are several kinds of standard paragraphs that are part of any well-written document set. These include things like
Here’s an example of a class javadoc comment with some standard paragraphs.
Here’s a quick example of the Card class with javadoc documentation folded in.
Card.py
Java JUnit requires that we build a test class separate from the application class we’re testing. The test class will be a subclass of TestCase, which has one or more test methods.
Workflow. One approach to unit testing is to build the tests first, then write a class which at least doesn’t crash, but may not pass all the tests. Once we have this in place, we can now debug the tests until everything looks right. This is called test-driven development.
We’d start with unittest files in the test directory of our project. In this case, we’d have testCard.java and testDeck.java. We also need skeleton files in our src directory: Card.java and Deck.java.
Generally, the process for creating a class with the unit tests has the following outline.
Write a skeleton for the target class. One that doesn’t really do anything, but at least compiles and has the right method names.
Write the test class. This will create instances of the target class, exercise those instances, and make assertions about the state of those instances.
Run the test, knowing that will fail. Sometimes our target class is so simple that we get it right the first time. Other times, the target class is more complex and there are parts we didn’t finish when we wrote the skeleton version.
While tests are still failing.
At this point, the target class passes the suite of tests. However, it may still fail to meet other quality criteria. For example, it may have a convoluted structure, or it may be inefficient, or it may lack appropriate documentation. In any case, we’re not really done with development.
While our target class fails to meet our quality standards.
Using JUnit. A test runner will locate all the TestCase instances, execute them and summarize the pass/fail status of each individual test method.
Generally, we’ll organize our project directory to have a test directory and a src directory.
Here is an example of compiling and running this test from the command line. Your IDE will generally have a JUnit runner built-in. We can’t cover the various IDE (NetBeans, Eclipse, JBuilder, Visual Studio, etc.) in this book, so we’ve provided just the command-line equivalent.
Let’s assume we’ve built two classes in some chapter; pretend that we’re building Card and Deck . One class defines a standard playing card and the other class deals individual card instances. We need unit tests for each class.
Generally, unit tests are taken to mean that a class is tested in isolation. In our case, a unit test for Card is completely isolated because it has no dependencies.
However, our Deck class depends on Card, leading us to make a choice. Either we have to create a Mock Card that can be used to test Deck in complete isolation, or our Deck test will depend on both Deck and Card. The choice depends on the relative complexity of Card, and whether or not Deck and Card will evolve independently.
Some folks demand that all testing be done in “complete” isolation with a lot of mock classes. Other folks are less strict on this, recognizing that Deck and Card are very tightly coupled and Card is very simple. The Mock Card is almost as complex as Card.
TestCard.java
Generally, we create a number of object instances in the setup method. In this case, we created five distinct Card instances. These object constructors imply several things in our Card class.
Note that we didn’t write tests to create all suits or all ranks. We can add these later. In some cases, where we are working in large teams, we may need to produce tests which exhaustively enumerate all possibe alternatives. For the purposes of learning OO design, we only need to sketch out our class by defining the tests it must pass.
In testString(), we exercise the toString() method of the Card class to be sure that it formats cards correctly. These tests tell us what the formatting algorithm will look like.
In testOrder(), we exercise the compareTo() method of the Card class to be sure that it compares card ranks correctly. Note that we have explicitly claimed that the equality test only checks the rank and ignores the suit; this is typical for Blackjack, but won’t work well for Bridge or Solitaire.
Note that we didn’t exhaustively test all possible comparisons among the four cards we defined. We only need to execute the various paths within the compareTo() method. When we initially create the test class, we may not have written the Card class yet. What we have to do is develop enough tests to get started, and add tests as we start writing our Card class.
Our initial Card class needs to have just enough of an API to allow the tests to run. Here’s our skeleton Card class.
Card.java
This class will – minimally – participate in the testing. It won’t pass many tests, but it serves as a basis for developing the class implementation.